5,553 research outputs found

    Dynamics of Ferromagnetic Walls: Gravitational Properties

    Full text link
    We discuss a new mechanism which allows domain walls produced during the primordial electroweak phase transition. We show that the effective surface tension of these domain walls can be made vanishingly small due to a peculiar magnetic condensation induced by fermion zero modes localized on the wall. We find that in the perfect gas approximation the domain wall network behaves like a radiation gas. We consider the recent high-red shift supernova data and we find that the corresponding Hubble diagram is compatible with the presence in the Universe of a ideal gas of ferromagnetic domain walls. We show that our domain wall gas induces a completely negligible contribution to the large-scale anisotropy of the microwave background radiation.Comment: Replaced with revised version, accepted for publication in IJMP

    Chiral fermion mass and dispersion relations at finite temperature in the presence of hypermagnetic fields

    Full text link
    We study the modifications to the real part of the thermal self-energy for chiral fermions in the presence of a constant external hypermagnetic field. We compute the dispersion relation for fermions occupying a given Landau level to first order in g'^2, g^2 and g_phi^2 and to all orders in g'B, where g' and g are the U(1)_Y and SU(2)_L couplings of the standard model, respectively, g_phi is the fermion Yukawa coupling, and B is the hypermagnetic field strength. We show that in the limit where the temperature is large compared to sqrt{g'B}, left- and right-handed modes acquire finite and different B-dependent masses due to the chiral nature of their coupling with the external field. Given the current bounds on the strength of primordial magnetic fields, we argue that the above is the relevant scenario to study the effects of magnetic fields on the propagation of fermions prior and during the electroweak phase transition.Comment: 11 pages 4 figures, published versio

    Influence of the Magnetic Field on the Fermion Scattering off Bubble and Kink Walls

    Full text link
    We investigate the scattering of fermions off domain walls at the electroweak phase transition in presence of a magnetic field. We consider both the bubble wall and the kink domain wall. We derive and solve the Dirac equation for fermions with momentum perpendicular to the walls, and compute the transmission and reflection coefficients. In the case of kink domain wall, we briefly discuss the zero mode solutions localized on the wall. The possibile role of the magnetic field for the electroweak baryogenesis is also discussed.Comment: 11 pages and 3 eps figure

    Spin-phonon coupling in Gd(Co1/2Mn1/2)O3 perovskite

    Full text link
    We have investigated the temperature-dependent Raman-active phonons and the magnetic properties of Gd(Co1/2Mn1/2)O3 perovskite ceramics in the temperature range from 40 K to 300 K. The samples crystallized in an orthorhombic distorted simple perovskite, whose symmetry belongs to the Pnma space group. The data reveals spin-phonon coupling near the ferromagnetic transition occurring at around 120 K. The correlation of the Raman and magnetization data suggests that the structural order influences the magnitude of the spin-phonon coupling.Comment: 3 Figures, suplementary materia

    Far Infrared Slab Lensing and Subwavelength Imaging in Crystal Quartz

    Full text link
    We examine the possibility of using negative refraction stemming from the phonon response in an anisotropic crystal to create a simple slab lens with plane parallel sides, and show that imaging from such a lens should be possible at room temperature despite the effects of absorption that are inevitably present due to phonon damping. In particular, we consider the case of crystal quartz, a system for which experimental measurements consistent with all-angle negative refraction have already been demonstrated. Furthermore, we investigate the possibility of subwavelength imaging from such materials, and show that it should be possible for certain configurations.Comment: 12 pages, 10 figure

    Skeletal Muscle PGC-1β Signaling is Sufficient to Drive an Endurance Exercise Phenotype and to Counteract Components of Detraining in Mice

    Get PDF
    Peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α and -1β serve as master transcriptional regulators of muscle mitochondrial functional capacity and are capable of enhancing muscle endurance when overexpressed in mice. We sought to determine whether muscle-specific transgenic overexpression of PGC-1β affects the detraining response following endurance training. First, we established and validated a mouse exercise-training-detraining protocol. Second, using multiple physiological and gene expression end points, we found that PGC-1β overexpression in skeletal muscle of sedentary mice fully recapitulated the training response. Lastly, PGC-1β overexpression during the detraining period resulted in partial prevention of the detraining response. Specifically, an increase in the plateau at which O2 uptake (V̇o2) did not change from baseline with increasing treadmill speed [peak V̇o2 (ΔV̇o2max)] was maintained in trained mice with PGC-1β overexpression in muscle 6 wk after cessation of training. However, other detraining responses, including changes in running performance and in situ half relaxation time (a measure of contractility), were not affected by PGC-1β overexpression. We conclude that while activation of muscle PGC-1β is sufficient to drive the complete endurance phenotype in sedentary mice, it only partially prevents the detraining response following exercise training, suggesting that the process of endurance detraining involves mechanisms beyond the reversal of muscle autonomous mechanisms involved in endurance fitness. In addition, the protocol described here should be useful for assessing early-stage proof-of-concept interventions in preclinical models of muscle disuse atrophy

    The semiclassical limit of quantum gravity and the problem of time

    Full text link
    The question about the appearance of time in the semiclassical limit of quantum gravity continues to be discussed in the literature. It is believed that a temporal Schrodinger equation for matter fields on the background of a classical gravitational field must be true. To obtain this equation, the Born - Oppenheimer approximation for gravity is used. However, the origin of time in this equation is different in works of various authors. For example, in the papers of Kiefer and his collaborators, time is a parameter along a classical trajectory of gravitational field; in the works of Montani and his collaborators the origin of time is introducing the Kuchar - Torre reference fluid; in the extended phase space approach the origin of time is the consequence of existing of the observer in a fixed reference frame. We discuss and compare these approaches. To make the calculations transparent, we illustrate them with a model of a closed isotropic universe. In each approach, one obtains some Schrodinger equation for matter fields with quantum gravitational corrections, but the form of the equation and the corrections depend on additional assumptions which are rather arbitrary. None of the approaches can explain how time had appeared in the Early Universe, since it is supposed that classical gravity and, therefore, classical spacetime had already come into being.Comment: 18 pages, no figure, to be published in Int. J. Mod. Phys.
    • …
    corecore