63 research outputs found

    The novel BET inhibitor UM-002 reduces glioblastoma cell proliferation and invasion

    Get PDF
    Bromodomain and extraterminal domain (BET) proteins have emerged as therapeutic targets in multiple cancers, including the most common primary adult brain tumor glioblastoma (GBM). Although several BET inhibitors have entered clinical trials, few are brain penetrant. We have generated UM-002, a novel brain penetrant BET inhibitor that reduces GBM cell proliferation in vitro and in a human cerebral brain organoid model. Since UM-002 is more potent than other BET inhibitors, it could potentially be developed for GBM treatment. Furthermore, UM-002 treatment reduces the expression of cell-cycle related genes in vivo and reduces the expression of invasion related genes within the non-proliferative cells present in tumors as measured by single cell RNA-sequencing. These studies suggest that BET inhibition alters the transcriptional landscape of GBM tumors, which has implications for designing combination therapies. Importantly, they also provide an integrated dataset that combines in vitro and ex vivo studies with in vivo single-cell RNA-sequencing to characterize a novel BET inhibitor in GBM

    Immunotherapy and Epigenetic Pathway Modulation in Glioblastoma Multiforme

    Get PDF
    Glioblastoma Multiforme (GBM) is the most common malignant primary brain tumor. Despite aggressive multimodality treatment it remains one of the most challenging and intractable cancers (1]. While current standard of care treatment for GBM is maximal safe surgical resection, systemic chemotherapy with Temozolimide (TMZ), and radiation therapy, the current prognosis of GBM patients remains poor, with a median overall survival of 12–15 months (2, 3). Therefore, other treatments are needed to provide better outcomes for GBM patients. Immunotherapy is one of the most promising new cancer treatment approaches. Immunotherapy drugs have obtained regulatory approval in a variety of cancers including melanoma (4), Hodgkin lymphoma (5), and non-small cell lung cancer (6). The basis of immunotherapy in cancer treatment is linked to stimulating the immune system to recognize cancer cells as foreign, thereby leading to the eventual elimination of the tumor. One form of immunotherapy utilizes vaccines that target tumor antigens (7), while other approaches utilize T-cells in patients to stimulate them to attack tumor cells (8). Despite intensive efforts all approaches have not been overtly successful (9), suggesting that we need to better understand the underlying biology of tumor cells and their environment as they respond to immunotherapy. Recent studies have elucidated epigenetic pathway regulation of GBM tumor expansion (10), suggesting that combined epigenetic pathway inhibition with immunotherapy may be feasible. In this review, we discuss current GBM clinical trials and how immune system interactions with epigenetic pathways and signaling nodes can be delineated to uncover potential combination therapies for this incurable disease

    The E3 ubiquitin ligase component, Cereblon, is an evolutionarily conserved regulator of Wnt signaling

    Get PDF
    Immunomodulatory drugs (IMiDs) are important for the treatment of multiple myeloma and myelodysplastic syndrome. Binding of IMiDs to Cereblon (CRBN), the substrate receptor of the CRL4CRBN E3 ubiquitin ligase, induces cancer cell death by targeting key neo-substrates for degradation. Despite this clinical significance, the physiological regulation of CRBN remains largely unknown. Herein we demonstrate that Wnt, the extracellular ligand of an essential signal transduction pathway, promotes the CRBN-dependent degradation of a subset of proteins. These substrates include Casein kinase 1α (CK1α), a negative regulator of Wnt signaling that functions as a key component of the β-Catenin destruction complex. Wnt stimulation induces the interaction of CRBN with CK1α and its resultant ubiquitination, and in contrast with previous reports does so in the absence of an IMiD. Mechanistically, the destruction complex is critical in maintaining CK1α stability in the absence of Wnt, and in recruiting CRBN to target CK1α for degradation in response to Wnt. CRBN is required for physiological Wnt signaling, as modulation of CRBN in zebrafish and Drosophila yields Wnt-driven phenotypes. These studies demonstrate an IMiD-independent, Wnt-driven mechanism of CRBN regulation and provide a means of controlling Wnt pathway activity by CRBN, with relevance for development and disease

    CDKs Give Cdc6 a License to Drive into S Phase

    Get PDF
    The accumulation of Cdc6 promotes the initiation of DNA replication. In this issue of Cell, Mailand and Diffley (2005) show that phosphorylation of Cdc6 by cyclin-dependent kinases prevents its destruction by the anaphase promoting complex (APC). This simple mechanism explains how the APC simultaneously spares Cdc6 while targeting for destruction suppressors of DNA replication during the transition from quiescence to cell cycle reentry

    An overview of human single-cell RNA sequencing studies in neurobiological disease

    No full text
    Neurobiological disorders are highly prevalent medical conditions that contribute to significant morbidity and mortality. Single-cell RNA sequencing (scRNA-seq) is a technique that measures gene expression in individual cells. In this review, we survey scRNA-seq studies of tissues from patients suffering from neurobiological disease. This includes postmortem human brains and organoids derived from peripheral cells. We highlight a range of conditions, including epilepsy, cognitive disorders, substance use disorders, and mood disorders. These findings provide new insights into neurobiological disease in multiple ways, including discovering novel cell types or subtypes involved in disease, proposing new pathophysiological mechanisms, uncovering novel drug targets, or identifying potential biomarkers. We discuss the quality of these findings and suggest potential future directions and areas open for additional research, including studies of non-cortical brain regions and additional conditions such as anxiety disorders, mood disorders, and sleeping disorders. We argue that additional scRNA-seq of tissues from patients suffering from neurobiological disease could advance our understanding and treatment of these conditions
    corecore