3 research outputs found

    In Vivo Investigation of the Ameliorating Effect of Copper Albumin Complex on chondroitin sulfate in Monosodium iodoacetate -Induced Knee Osteoarthritis

    Get PDF
    Osteoarthritis (OA) is a condition that manifests as cartilage deterioration and subchondral bone sclerosis in the joint tissues. The weight-bearing joint is most severely impacted by OA. According to some research, consuming foods high in copper albumin complex (cu-albumin complex) can help with OA-related joint degeneration and pain relief. The current study's objective to determine how oral administration of the cu-albumin complex as an anti-inflammatory medication affected the development of rat knee osteoarthritis (KOA). Fifty adult albino rats were divided into three groups: negative control untreated (n= 10, no KOA induction); positive untreated control (n= 20, KOA induction); and treated group (n= 20, KOA induction with administration of cu-albumin complex). According to the severity of the clinical symptoms, treated and untreated arthritic groups were equally divided into mild and severe groups (n=10). Monosodium iodoacetate (MIA) was used as intra-articular injection for osteoarthritis induction. Rats were euthanized after a month of the beginning of the experiment, and the joints were examined histopathologically and immunohistochemically. It was indicated that the treatment was effective in reducing KOA severity and in improvement of chondroitin sulfate of the affected cartilages. In conclusion, the structure of the chondroitin sulphate in the knee joint cartilages of KOA-affected rats was modified by the cu-albumin complex

    Perspective Chapter: The Toxic Silver (Hg)

    Get PDF
    In the late 1950s, residents of a Japanese fishing village known as “Minamata” began falling ill and dying at an alarming rate. The Japanese authorities stated that methyl-mercury-rich seafood and shellfish caused the sickness. Burning fossil fuels represent ≈52.7% of Hg emissions. The majorities of mercury’s compounds are volatile and thus travel hundreds of miles with wind before being deposited on the earth’s surface. High acidity and dissolved organic carbon increase Hg-mobility in soil to enter the food chain. Additionally, Hg is taken up by areal plant parts via gas exchange. Mercury has no identified role in plants while exhibiting high affinity to form complexes with soft ligands such as sulfur and this consequently inactivates amino acids and sulfur-containing antioxidants. Long-term human exposure to Hg leads to neurotoxicity in children and adults, immunological, cardiac, and motor reproductive and genetic disorders. Accordingly, remediating contaminated soils has become an obligation. Mercury, like other potentially toxic elements, is not biodegradable, and therefore, its remediation should encompass either removal of Hg from soils or even its immobilization. This chapter discusses Hg’s chemical behavior, sources, health dangers, and soil remediation methods to lower Hg levels

    Pancreatic surgery outcomes: multicentre prospective snapshot study in 67 countries

    No full text
    corecore