4 research outputs found

    A Mendelian Trait for Olfactory Sensitivity Affects Odor Experience and Food Selection

    Get PDF
    SummaryHumans vary in acuity to many odors [1–4], with variation within olfactory receptor (OR) genes contributing to these differences [5–9]. How such variation also affects odor experience and food selection remains uncertain [10], given that such effects occur for taste [11–15]. Here we investigate β-ionone, which shows extreme sensitivity differences [4, 16, 17]. β-ionone is a key aroma in foods and beverages [18–21] and is added to products in order to give a pleasant floral note [22, 23]. Genome-wide and in vitro assays demonstrate rs6591536 as the causal variant for β-ionone odor sensitivity. rs6591536 encodes a N183D substitution in the second extracellular loop of OR5A1 and explains >96% of the observed phenotypic variation, resembling a monogenic Mendelian trait. Individuals carrying genotypes for β-ionone sensitivity can more easily differentiate between food and beverage stimuli with and without added β-ionone. Sensitive individuals typically describe β-ionone in foods and beverages as “fragrant” and “floral,” whereas less-sensitive individuals describe these stimuli differently. rs6591536 genotype also influences emotional associations and explains differences in food and product choices. These studies demonstrate that an OR variant that influences olfactory sensitivity can affect how people experience and respond to foods, beverages, and other products

    Drymatter content and fruit size affect flavour and texture of novel Actinidia deliciosa genotypes

    Full text link
    BACKGROUND: Previous studies with commercial kiwifruit cultivars have demonstrated that the taste of fruit with higher dry matter content (DM) is more liked by consumers. A unique replicated trial of kiwifruit genotypes (10 high/low DM × small/large-fruited genotypes) has provided an opportunity to consider how the genetic propensity for a kiwifruit to accumulate DM affects fruit flavour and texture. In the present study, eating-ripe fruit from each of the genotypes were assessed using a trained sensory panel and the relationships between these sensory attributes and fresh weight, DM, flesh firmness and soluble solids content (SSC) were explored. RESULTS: The genotypes provided a diversity of flavour and texture attributes, each of which varied in perceived intensity of the sensory experience. High-DM genotypes had higher SSC and were perceived as sweeter than low-DM genotypes. Sweet taste was closely associated with the perception of the tropical flavour and high-DM genotypes were found to have more tropical notes. Fruit size was associated with fruit texture, and small fruit were characterised by a firmer and more fibrous core. Large high-DM fruit were perceived as juicier than those of all other genotypes. CONCLUSIONS: Genotypes were perceived differently from one another, and differences in fruit size and DM content were reflected in fruit sensorial properties. This study is unique in demonstrating interactions between fruit size, DM and sensory properties. These findings could be relevant not only to kiwifruit but to fruiting crop breeders in general, because of the demonstrated potential for effects of fruit size and DM content on sweetness, flavour and fruit texture
    corecore