15 research outputs found

    Average and extreme multi-atom Van der Waals interactions: Strong coupling of multi-atom Van der Waals interactions with covalent bonding

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The prediction of ligand binding or protein structure requires very accurate force field potentials – even small errors in force field potentials can make a 'wrong' structure (from the billions possible) more stable than the single, 'correct' one. However, despite huge efforts to optimize them, currently-used all-atom force fields are still not able, in a vast majority of cases, even to keep a protein molecule in its native conformation in the course of molecular dynamics simulations or to bring an approximate, homology-based model of protein structure closer to its native conformation.</p> <p>Results</p> <p>A strict analysis shows that a specific coupling of multi-atom Van der Waals interactions with covalent bonding can, in extreme cases, increase (or decrease) the interaction energy by about 20–40% at certain angles between the direction of interaction and the covalent bond. It is also shown that on average multi-body effects decrease the total Van der Waals energy in proportion to the square root of the electronic component of dielectric permittivity corresponding to dipole-dipole interactions at small distances, where Van der Waals interactions take place.</p> <p>Conclusion</p> <p>The study shows that currently-ignored multi-atom Van der Waals interactions can, in certain instances, lead to significant energy effects, comparable to those caused by the replacement of atoms (for instance, C by N) in conventional pairwise Van der Waals interactions.</p

    Membrane-mediated interactions

    Full text link
    Interactions mediated by the cell membrane between inclusions, such as membrane proteins or antimicrobial peptides, play important roles in their biological activity. They also constitute a fascinating challenge for physicists, since they test the boundaries of our understanding of self-assembled lipid membranes, which are remarkable examples of two-dimensional complex fluids. Inclusions can couple to various degrees of freedom of the membrane, resulting in different types of interactions. In this chapter, we review the membrane-mediated interactions that arise from direct constraints imposed by inclusions on the shape of the membrane. These effects are generic and do not depend on specific chemical interactions. Hence, they can be studied using coarse-grained soft matter descriptions. We deal with long-range membrane-mediated interactions due to the constraints imposed by inclusions on membrane curvature and on its fluctuations. We also discuss the shorter-range interactions that arise from the constraints on membrane thickness imposed by inclusions presenting a hydrophobic mismatch with the membrane.Comment: 38 pages, 10 figures, pre-submission version. In: Bassereau P., Sens P. (eds) Physics of Biological Membranes. Springer, Cha

    van der Waals Interactions in Material Modelling

    Get PDF
    Van der Waals (vdW) interactions stem from electronic zero-point fluctuations and are often critical for the correct description of structure, stability, and response properties of molecules and materials, including biomolecules, nanomaterials, and material interfaces. Here, we give a conceptual as well as mathematical overview of the current state of modeling vdW interactions,focusing in particular on the consequences of different approximations for practical applications. We present a systematic classification of approximate first-principles models based on the adiabatic-connection fluctuation-dissipation theorem, namely the nonlocal density functionals, interatomic methods, and methods based on the random-phase approximation. The applicability of these methods to different types of materials and material properties is discussed in connection with availability of theoretical and experimental benchmarks. We conclude with a roadmap of the open problems that remain to be solved to construct a universal, efficient, and accurate vdW model for realistic material modeling
    corecore