576 research outputs found
LM rendezvous procedures - F mission, AS-505/CSM-106/LM-4 Final report
Rendezvous procedures for LM-4 and CSM for use in crew training and flight plannin
Galactic Cosmic Rays from Supernova Remnants: II Shock Acceleration of Gas and Dust
This is the second paper (the first was astro-ph/9704267) of a series
analysing the Galactic Cosmic Ray (GCR) composition and origin. In this we
present a quantitative model of GCR origin and acceleration based on the
acceleration of a mixture of interstellar and/or circumstellar gas and dust by
supernova remnant blast waves. We present results from a nonlinear shock model
which includes (i) the direct acceleration of interstellar gas-phase ions, (ii)
a simplified model for the direct acceleration of weakly charged dust grains to
energies of order 100keV/amu simultaneously with the gas ions, (iii) frictional
energy losses of the grains colliding with the gas, (iv) sputtering of ions of
refractory elements from the accelerated grains and (v) the further shock
acceleration of the sputtered ions to cosmic ray energies. The calculated GCR
composition and spectra are in good agreement with observations.Comment: to appear in ApJ, 51 pages, LaTeX with AAS macros, 9 postscript
figures, also available from ftp://wonka.physics.ncsu.edu/pub/elliso
Index
The interest in relativistic beam-plasma instabilities has been greatly rejuvenated over the past two decades by novel concepts in laboratory and space plasmas. Recent advances in this long-standing field are here reviewed from both theoretical and numerical points of view. The primary focus is on the two-dimensional spectrum of unstable electromagnetic waves growing within relativistic, unmagnetized, and uniform electron beam-plasma systems. Although the goal is to provide a unified picture of all instability classes at play, emphasis is put on the potentially dominant waves propagating obliquely to the beam direction, which have received little attention over the years. First, the basic derivation of the general dielectric function of a kinetic relativistic plasma is recalled. Next, an overview of two-dimensional unstable spectra associated with various beam-plasma distribution functions is given. Both cold-fluid and kinetic linear theory results are reported, the latter being based on waterbag and Maxwell–Jüttner model distributions. The main properties of the competing modes (developing parallel, transverse, and oblique to the beam) are given, and their respective region of dominance in the system parameter space is explained. Later sections address particle-in-cell numerical simulations and the nonlinear evolution of multidimensional beam-plasma systems. The elementary structures generated by the various instability classes are first discussed in the case of reduced-geometry systems. Validation of linear theory is then illustrated in detail for large-scale systems, as is the multistaged character of the nonlinear phase. Finally, a collection of closely related beam-plasma problems involving additional physical effects is presented, and worthwhile directions of future research are outlined.Original Publication: Antoine Bret, Laurent Gremillet and Mark Eric Dieckmann, Multidimensional electron beam-plasma instabilities in the relativistic regime, 2010, Physics of Plasmas, (17), 12, 120501-1-120501-36. http://dx.doi.org/10.1063/1.3514586 Copyright: American Institute of Physics http://www.aip.org/</p
Fine structure in the gamma-ray sky
The EGRET results for gamma-ray intensities in and near the Galactic Plane
have been analysed in some detail. Attention has been concentrated on energies
above 1 GeV and the individual intensities in a longitude bin have
been determined and compared with the large scale mean found from a nine-degree
polynomial fit.
Comparison has been made of the observed standard deviation for the ratio of
these intensities with that expected from variants of our model. The basic
model adopts cosmic ray origin from supernova remnants, the particles then
diffusing through the Galaxy with our usual 'anomalous diffusion'. The variants
involve the clustering of SN, a frequency distribution for supernova explosion
energies, and 'normal', rather than 'anomalous' diffusion.
It is found that for supernovae of unique energy, and our usual anomalous
diffusion, clustering is necessary, particularly in the Inner Galaxy. An
alternative, and preferred, situation is to adopt the model with a frequency
distribution of supernova energies. The results for the Outer Galaxy are such
that no clustering is required.Comment: 10 pages, 4 figures, 1 table, accepted for publication in J.Phys.G:
Nucl.Part.Phy
A multifrequency study of giant radio sources-II. Spectral ageing analysis of the lobes of selected sources
Multifrequency observations with the GMRT and the VLA are used to determine
the spectral breaks in consecutive strips along the lobes of a sample of
selected giant radio sources (GRSs) in order to estimate their spectral ages.
The maximum spectral ages estimated for the detected radio emission in the
lobes of our sources range from 6 to 36 Myr with a median value of
20 Myr using the classical equipartition fields. Using the magnetic field
estimates from the Beck & Krause formalism the spectral ages range from 5
to 38 Myr with a median value of 22 Myr. These ages are significantly
older than smaller sources. In all but one source (J1313+6937) the spectral age
gradually increases with distance from the hotspot regions, confirming that
acceleration of the particles mainly occurs in the hotspots. Most of the GRSs
do not exhibit zero spectral ages in the hotspots, as is the case in earlier
studies of smaller sources. This is likely to be largely due to contamination
by more extended emission due to relatively modest resolutions. The injection
spectral indices range from 0.55 to 0.88 with a median value of
0.6. We discuss these values in the light of theoretical expectations,
and show that the injection spectral index appears to be correlated with
luminosity and/or redshift as well as with linear size.Comment: 12 Pages, 13 Figures, 9 Tables, Accepted for publication in MNRA
Nonthermal Bremsstrahlung and Hard X-ray Emission from Clusters of Galaxies
We have calculated nonthermal bremsstrahlung (NTB) models for the hard X-ray
(HXR) tails recently observed by BeppoSAX in clusters of galaxies. In these
models, the HXR emission is due to suprathermal electrons with energies of
about 10-200 keV. Under the assumption that the suprathermal electrons form
part of a continuous spectrum of electrons including highly relativistic
particles, we have calculated the inverse Compton (IC) extreme ultraviolet
(EUV), HXR, and radio synchrotron emission by the extensions of the same
populations. For accelerating electron models with power-law momentum spectra
(N[p] propto p^{- mu}) with mu <~ 2.7, which are those expected from strong
shock acceleration, the IC HXR emission exceeds that due to NTB. Thus, these
models are only of interest if the electron population is cut-off at some upper
energy <~1 GeV. Similarly, flat spectrum accelerating electron models produce
more radio synchrotron emission than is observed from clusters if the ICM
magnetic field is B >~ 1 muG. The cooling electron model produces vastly too
much EUV emission as compared to the observations of clusters. We have compared
these NTB models to the observed HXR tails in Coma and Abell 2199. The NTB
models require a nonthermal electron population which contains about 3% of the
number of electrons in the thermal ICM. If the suprathermal electron population
is cut-off at some energy above 100 keV, then the models can easily fit the
observed HXR fluxes and spectral indices in both clusters. For accelerating
electron models without a cutoff, the electron spectrum must be rather steep >~
2.9.Comment: Accepted for publication in the Astrophysical Journal. 10 pages with
5 embedded Postscript figures in emulateapj.sty. An abbreviated abstract
follow
Nonthermal Emission from a Supernova Remnant in a Molecular Cloud
In evolved supernova remnants (SNRs) interacting with molecular clouds, such
as IC 443, W44, and 3C391, a highly inhomogeneous structure consisting of a
forward shock of moderate Mach number, a cooling layer, a dense radiative shell
and an interior region filled with hot tenuous plasma is expected. We present a
kinetic model of nonthermal electron injection, acceleration and propagation in
that environment and find that these SNRs are efficient electron accelerators
and sources of hard X- and gamma-ray emission. The energy spectrum of the
nonthermal electrons is shaped by the joint action of first and second order
Fermi acceleration in a turbulent plasma with substantial Coulomb losses.
Bremsstrahlung, synchrotron, and inverse Compton radiation of the nonthermal
electrons produce multiwavelength photon spectra in quantitative agreement with
the radio and the hard emission observed by ASCA and EGRET from IC 443. We
distinguish interclump shock wave emission from molecular clump shock wave
emission accounting for a complex structure of molecular cloud. Spatially
resolved X- and gamma- ray spectra from the supernova remnants IC 443, W44, and
3C391 as might be observed with BeppoSAX, Chandra XRO, XMM, INTEGRAL and GLAST
would distinguish the contribution of the energetic lepton component to the
gamma-rays observed by EGRET.Comment: 14 pages, 4 figure, Astrophysical Journal, v.538, 2000 (in press
Analytic solution for nonlinear shock acceleration in the Bohm limit
The selfconsistent steady state solution for a strong shock, significantly
modified by accelerated particles is obtained on the level of a kinetic
description, assuming Bohm-type diffusion. The original problem that is
commonly formulated in terms of the diffusion-convection equation for the
distribution function of energetic particles, coupled with the thermal plasma
through the momentum flux continuity equation, is reduced to a nonlinear
integral equation in one variable. Its solution provides selfconsistently both
the particle spectrum and the structure of the hydrodynamic flow. A critical
system parameter governing the acceleration process is found to be , where , with a suitably
normalized injection rate , the Mach number M >> 1, and the cut-off
momentum . We particularly focus on an efficient solution, in which
almost all the energy of the flow is converted into a few energetic particles.
It was found that (i) for this efficient solution (or, equivalently, for
multiple solutions) to exist, the parameter
must exceed a critical value ( is the injection
momentum), (ii) the total shock compression ratio r increases with M and
saturates at a level that scales as $ r \propto \Lambda_1 (iii) the downstream
power-law spectrum has the universal index q=3.5 over a broad momentum range.
(iv) completely smooth shock transitions do not appear in the steady state
kinetic description.Comment: 39 pages, 3 PostScript figures, uses aasms4.sty, to appear in Aug.
20, 1997 issue ApJ, vol. 48
A New Measurement of Cosmic Ray Composition at the Knee
The Dual Imaging Cerenkov Experiment (DICE) was designed and operated for
making elemental composition measurements of cosmic rays near the knee of the
spectrum at several PeV. Here we present the first results using this
experiment from the measurement of the average location of the depth of shower
maximum, , in the atmosphere as a function of particle energy. The value
of near the instrument threshold of ~0.1 PeV is consistent with
expectations from previous direct measurements. At higher energies there is
little change in composition up to ~5 PeV. Above this energy is deeper
than expected for a constant elemental composition implying the overall
elemental composition is becoming lighter above the knee region. These results
disagree with the idea that cosmic rays should become on average heavier above
the knee. Instead they suggest a transition to a qualitatively different
population of particles above 5 PeV.Comment: 7 pages, LaTeX, two eps figures, aas2pp4.sty and epsf.sty included,
accepted by Ap.J. Let
Exact Expressions for the Critical Mach Numbers in the Two-Fluid Model of Cosmic-Ray Modified Shocks
The acceleration of relativistic particles due to repeated scattering across
a shock wave remains the most attractive model for the production of energetic
cosmic rays. This process has been analyzed extensively during the past two
decades using the ``two-fluid'' model of diffusive shock acceleration. It is
well known that 1, 2, or 3 distinct solutions for the flow structure can be
found depending on the upstream parameters. The precise nature of the critical
conditions delineating the number and character of shock transitions has
remained unclear, mainly due to the inappropriate choice of parameters used in
the determination of the upstream boundary conditions. We derive the exact
critical conditions by reformulating the upstream boundary conditions in terms
of two individual Mach numbers defined with respect to the cosmic-ray and gas
sound speeds, respectively. The gas and cosmic-ray adiabatic indices are
assumed to remain constant throughout the flow, although they may have
arbitrary, independent values. Our results provide for the first time a
complete, analytical classification of the parameter space of shock transitions
in the two-fluid model. When multiple solutions are possible, we propose using
the associated entropy distributions as a means for indentifying the most
stable configuration.Comment: Accepted for publication in ApJ; corrected a few typos; added journal
re
- …