88 research outputs found
Multiplier bootstrap of tail copulas with applications
For the problem of estimating lower tail and upper tail copulas, we propose
two bootstrap procedures for approximating the distribution of the
corresponding empirical tail copulas. The first method uses a multiplier
bootstrap of the empirical tail copula process and requires estimation of the
partial derivatives of the tail copula. The second method avoids this
estimation problem and uses multipliers in the two-dimensional empirical
distribution function and in the estimates of the marginal distributions. For
both multiplier bootstrap procedures, we prove consistency. For these
investigations, we demonstrate that the common assumption of the existence of
continuous partial derivatives in the the literature on tail copula estimation
is so restrictive, such that the tail copula corresponding to tail independence
is the only tail copula with this property. Moreover, we are able to solve this
problem and prove weak convergence of the empirical tail copula process under
nonrestrictive smoothness assumptions that are satisfied for many commonly used
models. These results are applied in several statistical problems, including
minimum distance estimation and goodness-of-fit testing.Comment: Published in at http://dx.doi.org/10.3150/12-BEJ425 the Bernoulli
(http://isi.cbs.nl/bernoulli/) by the International Statistical
Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm
A note on conditional versus joint unconditional weak convergence in bootstrap consistency results
The consistency of a bootstrap or resampling scheme is classically validated
by weak convergence of conditional laws. However, when working with stochastic
processes in the space of bounded functions and their weak convergence in the
Hoffmann-J{\o}rgensen sense, an obstacle occurs: due to possible
non-measurability, neither laws nor conditional laws are well-defined. Starting
from an equivalent formulation of weak convergence based on the bounded
Lipschitz metric, a classical circumvent is to formulate bootstrap consistency
in terms of the latter distance between what might be called a
\emph{conditional law} of the (non-measurable) bootstrap process and the law of
the limiting process. The main contribution of this note is to provide an
equivalent formulation of bootstrap consistency in the space of bounded
functions which is more intuitive and easy to work with. Essentially, the
equivalent formulation consists of (unconditional) weak convergence of the
original process jointly with two bootstrap replicates. As a by-product, we
provide two equivalent formulations of bootstrap consistency for statistics
taking values in separable metric spaces: the first in terms of (unconditional)
weak convergence of the statistic jointly with its bootstrap replicates, the
second in terms of convergence in probability of the empirical distribution
function of the bootstrap replicates. Finally, the asymptotic validity of
bootstrap-based confidence intervals and tests is briefly revisited, with
particular emphasis on the, in practice unavoidable, Monte Carlo approximation
of conditional quantiles.Comment: 21 pages, 1 Figur
Extreme value copula estimation based on block maxima of a multivariate stationary time series
The core of the classical block maxima method consists of fitting an extreme
value distribution to a sample of maxima over blocks extracted from an
underlying series. In asymptotic theory, it is usually postulated that the
block maxima are an independent random sample of an extreme value distribution.
In practice however, block sizes are finite, so that the extreme value
postulate will only hold approximately. A more accurate asymptotic framework is
that of a triangular array of block maxima, the block size depending on the
size of the underlying sample in such a way that both the block size and the
number of blocks within that sample tend to infinity. The copula of the vector
of componentwise maxima in a block is assumed to converge to a limit, which,
under mild conditions, is then necessarily an extreme value copula. Under this
setting and for absolutely regular stationary sequences, the empirical copula
of the sample of vectors of block maxima is shown to be a consistent and
asymptotically normal estimator for the limiting extreme value copula.
Moreover, the empirical copula serves as a basis for rank-based, nonparametric
estimation of the Pickands dependence function of the extreme value copula. The
results are illustrated by theoretical examples and a Monte Carlo simulation
study.Comment: 34 page
Nonparametric inference on L\'evy measures and copulas
In this paper nonparametric methods to assess the multivariate L\'{e}vy
measure are introduced. Starting from high-frequency observations of a L\'{e}vy
process , we construct estimators for its tail integrals and the
Pareto-L\'{e}vy copula and prove weak convergence of these estimators in
certain function spaces. Given n observations of increments over intervals of
length , the rate of convergence is for
which is natural concerning inference on the L\'{e}vy measure. Besides
extensions to nonequidistant sampling schemes analytic properties of the
Pareto-L\'{e}vy copula which, to the best of our knowledge, have not been
mentioned before in the literature are provided as well. We conclude with a
short simulation study on the performance of our estimators and apply them to
real data.Comment: Published in at http://dx.doi.org/10.1214/13-AOS1116 the Annals of
Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical
Statistics (http://www.imstat.org
A note on nonparametric estimation of bivariate tail dependence
Nonparametric estimation of tail dependence can be based on a standardization of the marginals if
their cumulative distribution functions are known. In this paper it is shown to be asymptotically more
efficient if the additional knowledge of the marginals is ignored and estimators are based on ranks. The
discrepancy between the two estimators is shown to be substantial for the popular Clayton model. A
brief simulation study indicates that the asymptotic conclusions transfer to finite samples
- …