54 research outputs found
Primary stroke prevention worldwide : translating evidence into action
Funding Information: The stroke services survey reported in this publication was partly supported by World Stroke Organization and Auckland University of Technology. VLF was partly supported by the grants received from the Health Research Council of New Zealand. MOO was supported by the US National Institutes of Health (SIREN U54 HG007479) under the H3Africa initiative and SIBS Genomics (R01NS107900, R01NS107900-02S1, R01NS115944-01, 3U24HG009780-03S5, and 1R01NS114045-01), Sub-Saharan Africa Conference on Stroke Conference (1R13NS115395-01A1), and Training Africans to Lead and Execute Neurological Trials & Studies (D43TW012030). AGT was supported by the Australian National Health and Medical Research Council. SLG was supported by a National Heart Foundation of Australia Future Leader Fellowship and an Australian National Health and Medical Research Council synergy grant. We thank Anita Arsovska (University Clinic of Neurology, Skopje, North Macedonia), Manoj Bohara (HAMS Hospital, Kathmandu, Nepal), Denis ?erimagi? (Poliklinika Glavi?, Dubrovnik, Croatia), Manuel Correia (Hospital de Santo Ant?nio, Porto, Portugal), Daissy Liliana Mora Cuervo (Hospital Moinhos de Vento, Porto Alegre, Brazil), Anna Cz?onkowska (Institute of Psychiatry and Neurology, Warsaw, Poland), Gloria Ekeng (Stroke Care International, Dartford, UK), Jo?o Sargento-Freitas (Centro Hospitalar e Universit?rio de Coimbra, Coimbra, Portugal), Yuriy Flomin (MC Universal Clinic Oberig, Kyiv, Ukraine), Mehari Gebreyohanns (UT Southwestern Medical Centre, Dallas, TX, USA), Ivete Pillo Gon?alves (Hospital S?o Jos? do Avai, Itaperuna, Brazil), Claiborne Johnston (Dell Medical School, University of Texas, Austin, TX, USA), Kristaps Jurj?ns (P Stradins Clinical University Hospital, Riga, Latvia), Rizwan Kalani (University of Washington, Seattle, WA, USA), Grzegorz Kozera (Medical University of Gda?sk, Gda?sk, Poland), Kursad Kutluk (Dokuz Eylul University, ?zmir, Turkey), Branko Malojcic (University Hospital Centre Zagreb, Zagreb, Croatia), Micha? Maluchnik (Ministry of Health, Warsaw, Poland), Evija Migl?ne (P Stradins Clinical University Hospital, Riga, Latvia), Cassandra Ocampo (University of Botswana, Princess Marina Hospital, Botswana), Louise Shaw (Royal United Hospitals Bath NHS Foundation Trust, Bath, UK), Lekhjung Thapa (Upendra Devkota Memorial-National Institute of Neurological and Allied Sciences, Kathmandu, Nepal), Bogdan Wojtyniak (National Institute of Public Health, Warsaw, Poland), Jie Yang (First Affiliated Hospital of Chengdu Medical College, Chengdu, China), and Tomasz Zdrojewski (Medical University of Gda?sk, Gda?sk, Poland) for their comments on early draft of the manuscript. The views expressed in this article are solely the responsibility of the authors and they do not necessarily reflect the views, decisions, or policies of the institution with which they are affiliated. We thank WSO for funding. The funder had no role in the design, data collection, analysis and interpretation of the study results, writing of the report, or the decision to submit the study results for publication. Funding Information: The stroke services survey reported in this publication was partly supported by World Stroke Organization and Auckland University of Technology. VLF was partly supported by the grants received from the Health Research Council of New Zealand. MOO was supported by the US National Institutes of Health (SIREN U54 HG007479) under the H3Africa initiative and SIBS Genomics (R01NS107900, R01NS107900-02S1, R01NS115944-01, 3U24HG009780-03S5, and 1R01NS114045-01), Sub-Saharan Africa Conference on Stroke Conference (1R13NS115395-01A1), and Training Africans to Lead and Execute Neurological Trials & Studies (D43TW012030). AGT was supported by the Australian National Health and Medical Research Council. SLG was supported by a National Heart Foundation of Australia Future Leader Fellowship and an Australian National Health and Medical Research Council synergy grant. We thank Anita Arsovska (University Clinic of Neurology, Skopje, North Macedonia), Manoj Bohara (HAMS Hospital, Kathmandu, Nepal), Denis Čerimagić (Poliklinika Glavić, Dubrovnik, Croatia), Manuel Correia (Hospital de Santo António, Porto, Portugal), Daissy Liliana Mora Cuervo (Hospital Moinhos de Vento, Porto Alegre, Brazil), Anna Członkowska (Institute of Psychiatry and Neurology, Warsaw, Poland), Gloria Ekeng (Stroke Care International, Dartford, UK), João Sargento-Freitas (Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal), Yuriy Flomin (MC Universal Clinic Oberig, Kyiv, Ukraine), Mehari Gebreyohanns (UT Southwestern Medical Centre, Dallas, TX, USA), Ivete Pillo Gonçalves (Hospital São José do Avai, Itaperuna, Brazil), Claiborne Johnston (Dell Medical School, University of Texas, Austin, TX, USA), Kristaps Jurjāns (P Stradins Clinical University Hospital, Riga, Latvia), Rizwan Kalani (University of Washington, Seattle, WA, USA), Grzegorz Kozera (Medical University of Gdańsk, Gdańsk, Poland), Kursad Kutluk (Dokuz Eylul University, İzmir, Turkey), Branko Malojcic (University Hospital Centre Zagreb, Zagreb, Croatia), Michał Maluchnik (Ministry of Health, Warsaw, Poland), Evija Miglāne (P Stradins Clinical University Hospital, Riga, Latvia), Cassandra Ocampo (University of Botswana, Princess Marina Hospital, Botswana), Louise Shaw (Royal United Hospitals Bath NHS Foundation Trust, Bath, UK), Lekhjung Thapa (Upendra Devkota Memorial-National Institute of Neurological and Allied Sciences, Kathmandu, Nepal), Bogdan Wojtyniak (National Institute of Public Health, Warsaw, Poland), Jie Yang (First Affiliated Hospital of Chengdu Medical College, Chengdu, China), and Tomasz Zdrojewski (Medical University of Gdańsk, Gdańsk, Poland) for their comments on early draft of the manuscript. The views expressed in this article are solely the responsibility of the authors and they do not necessarily reflect the views, decisions, or policies of the institution with which they are affiliated. We thank WSO for funding. The funder had no role in the design, data collection, analysis and interpretation of the study results, writing of the report, or the decision to submit the study results for publication. Funding Information: VLF declares that the PreventS web app and Stroke Riskometer app are owned and copyrighted by Auckland University of Technology; has received grants from the Brain Research New Zealand Centre of Research Excellence (16/STH/36), Australian National Health and Medical Research Council (NHMRC; APP1182071), and World Stroke Organization (WSO); is an executive committee member of WSO, honorary medical director of Stroke Central New Zealand, and CEO of New Zealand Stroke Education charitable Trust. AGT declares funding from NHMRC (GNT1042600, GNT1122455, GNT1171966, GNT1143155, and GNT1182017), Stroke Foundation Australia (SG1807), and Heart Foundation Australia (VG102282); and board membership of the Stroke Foundation (Australia). SLG is funded by the National Health Foundation of Australia (Future Leader Fellowship 102061) and NHMRC (GNT1182071, GNT1143155, and GNT1128373). RM is supported by the Implementation Research Network in Stroke Care Quality of the European Cooperation in Science and Technology (project CA18118) and by the IRIS-TEPUS project from the inter-excellence inter-cost programme of the Ministry of Education, Youth and Sports of the Czech Republic (project LTC20051). BN declares receiving fees for data management committee work for SOCRATES and THALES trials for AstraZeneca and fees for data management committee work for NAVIGATE-ESUS trial from Bayer. All other authors declare no competing interests. Publisher Copyright: © 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licenseStroke is the second leading cause of death and the third leading cause of disability worldwide and its burden is increasing rapidly in low-income and middle-income countries, many of which are unable to face the challenges it imposes. In this Health Policy paper on primary stroke prevention, we provide an overview of the current situation regarding primary prevention services, estimate the cost of stroke and stroke prevention, and identify deficiencies in existing guidelines and gaps in primary prevention. We also offer a set of pragmatic solutions for implementation of primary stroke prevention, with an emphasis on the role of governments and population-wide strategies, including task-shifting and sharing and health system re-engineering. Implementation of primary stroke prevention involves patients, health professionals, funders, policy makers, implementation partners, and the entire population along the life course.publishersversionPeer reviewe
Intestinal intraepithelial lymphocyte-enterocyte crosstalk regulates production of bactericidal angiogenin 4 by Paneth cells upon microbial challenge
Antimicrobial proteins influence intestinal microbial ecology and limit proliferation of pathogens, yet the regulation of their expression has only been partially elucidated. Here, we have identified a putative pathway involving epithelial cells and intestinal intraepithelial lymphocytes (iIELs) that leads to antimicrobial protein (AMP) production by Paneth cells. Mice lacking γδ iIELs (TCRδ(-/-)) express significantly reduced levels of the AMP angiogenin 4 (Ang4). These mice were also unable to up-regulate Ang4 production following oral challenge by Salmonella, leading to higher levels of mucosal invasion compared to their wild type counterparts during the first 2 hours post-challenge. The transfer of γδ iIELs from wild type (WT) mice to TCRδ(-/-) mice restored Ang4 production and Salmonella invasion levels were reduced to those obtained in WT mice. The ability to restore Ang4 production in TCRδ(-/-) mice was shown to be restricted to γδ iIELs expressing Vγ7-encoded TCRs. Using a novel intestinal crypt co-culture system we identified a putative pathway of Ang4 production initiated by exposure to Salmonella, intestinal commensals or microbial antigens that induced intestinal epithelial cells to produce cytokines including IL‑23 in a TLR-mediated manner. Exposure of TCR-Vγ7(+) γδ iIELs to IL-23 promoted IL‑22 production, which triggered Paneth cells to secrete Ang4. These findings identify a novel role for γδ iIELs in mucosal defence through sensing immediate epithelial cell cytokine responses and influencing AMP production. This in turn can contribute to the maintenance of intestinal microbial homeostasis and epithelial barrier function, and limit pathogen invasion
Changes in Testicular Morphology in Boars Actively Immunized Against Gonadotropin Hormone-Releasing Hormone
Alterations in testicular morphology were studied in boars actively immunized against gonadotropin hormone releasing hormone (GnRH). Ten boars were divided equally into two experimental groups (five GnRH-immunized, and five controls). Antibody production was achieved by conjugating GnRH to human serum globulin (hSG). The GnRH-hSG conjugate was emulsified in complete Freund’s adjuvant, and administered to bears at 12 weeks of age. Boars were given a booster in incomplete Freund’s adjuvant on week 18 and 20. The presence of high antibody titers to GnRH caused luteinizing hormone and testosterone to decline to nondetectable levels. Morphometric examination showed a reduction in percentage volume in Leydig cells/unit testis, seminiferous tubule diameter and seminiferous epithelial height, and an increase in non-Leydig cell interstitial tissue in GnRHimmunized bears compared with controls. Histologic evaluation displayed severe damage of the seminiferous epithelium, absence of spermatids, incomplete cell associations, disruption of Sertoli cells, formation of multinucleated giant cells, and a striking reduction in size and cytoplasmic structures of Leydig cells in GnRH-immunized animals. These results demonstrate the potent inhibitory effects of GnRH immunoneutralization on the boar reproductive system
Undiagnosed hypertrophic obstructive cardiomyopathy during transcatheter aortic valve replacement: a case report
Abstract Background Transcatheter aortic valve replacement is indicated for severe symptomatic aortic stenosis in patients who have a very high or prohibitive surgical risk as assessed pre-procedurally by the Society of Thoracic Surgery Risk Score, EuroSCORE (II), frailty testing, and other predictors. When combined with another left ventricular outflow tract obstruction, careful consideration must be taken prior to proceeding with transcatheter aortic valve replacement because an additional masked left ventricular outflow tract pathology can lead to challenging hemodynamics in the peri-deployment phase, as reported in this case. Case presentation A 56-year-old Caucasian man with multiple comorbidities and severe aortic stenosis underwent transcatheter aortic valve replacement under monitored anesthesia care. During the deployment phase, he developed dyspnea that progressed to pulmonary edema requiring emergent conversion to general anesthesia, orotracheal intubation, acute respiratory distress syndrome-type ventilation, and vasopressor medications. Intraoperative transesophageal echocardiography was performed and hypertrophic obstructive cardiomyopathy with systolic anterior motion of the mitral valve was discovered as an underlying pathology, undetected on preoperative imaging. After treatment with beta blockers, fluid resuscitation, and alpha-1 agonists, he stabilized and was eventually discharged from our hospital without any lasting sequelae. Conclusions Patients with aortic stenosis most often develop symmetric hypertrophy; however, a small subset has asymmetric septal hypertrophy leading to left ventricular outflow tract obstruction. In cases of severe aortic stenosis, however, evidence of left ventricular outflow tract obstruction via both symptoms and echocardiographic findings may be minimized due to extremely high afterload on the left ventricle. Diagnosing a left ventricular outflow tract obstruction as the cause of hemodynamic instability during transcatheter aortic valve replacement, in the absence of abnormal findings on echocardiogram preoperatively, requires a high index of clinical suspicion. The management of acute onset left ventricular outflow tract obstruction intraoperatively consists primarily of medical therapy, including rate control, adequate volume resuscitation, and avoidance of inotropes. With persistently elevated gradients, interventional treatments may be considered
Frequency distribution of affective, cohesive, and interactive indicators of social presence.
a. The three indicators of social presence. b. Affective component of social presence indicators. c. Interactive component of social presence indicators. d. Cohesive component of social presence indicators.</p
S1 File -
WhatsApp has become a medium of communication with the potential of promoting collaborative environment with peers, patients and general population. Till date, no analysis of professional WhatsApp groups’ activities exists in physiotherapy. The official WhatsApp group chats of the Association of Clinical and Academic Physiotherapists of Nigeria (ACAPN) was analyzed. A total of 20760 chats were gleaned from July 2020 to June 2021. Videos, audios and emoticons were excluded in the analysis. Administrative permission to conduct was obtained from ACAPN leadership. Two consenting physiotherapists who had never deleted their ACAPN group chats shared and exported all chats to a Gmail. The social presence theory for group communication was used as the framework of analysis. Thematic content analysis was used to analyze qualitative data. Descriptive statistics of frequency and percentages were used to summarize data. Based on social presence theory classifications, interactive messages (64.5%) followed by cohesive messages (30%) were predominant. Members used the platform more for expression of emotions affectively (100%), referring explicitly to others’ messages interactively (56.6%) and for greetings (phatic and salutation) cohesively (61.8%). Qualitative themes indicate that all three categories of social presence theory communications were present sufficiently with interactive category being the most common, as members used the WhatsApp platform to interact, construct and share knowledge. Group WhatsApp platform is a veritable means of communication and an indicator of level of social presence among Nigerian physiotherapists. Communication among Nigerian physiotherapists is mostly interactive, then cohesive and affective in terms of dynamics.</div
Distribution of interaction component of social presence indicators.
Groundedness (G)–This metric shows the number of quotations linked to a code. Density (D)–This metric shows the number of codes the stated code is connected to. In the interactions observed, formal interactions where significantly frequent than informal forms. Explicit referencing is seen to be the highest in this construct category. Asking of open questions is seen to be slightly higher relatively to closed question.</p
- …