8 research outputs found

    Effect of Crosslinking Agent (Zinc Chloride) on the Swelling Ratio and Water Retention Capacity of Polyacrylate and Polyvinyl Alcohol

    Get PDF
    In this study, using potassium polyacrylate (KPA), polyvinylalcohol (PVA), and zinc chloride as cross-linking agents, successfully synthesized novel superabsorbent polymers. Different weight ratios of KPA and PVA were used to prepare the polymers using polymerization solution. So, polymers with different weight ratios made from PVA and KPA. Superabsorbent polymers (SAPs) were produced using a simple approach at ambient temperature. By comparing absorption peaks, Fourier transform infrared spectroscopy (FTIR) and UV analysis were utilized to investigate the molecular interactions. The morphology of superabsorbent polymers was investigated by scanning electron microscopy (SEM). According to FT-IR, UV, and SEM results, the superabsorbent polymers (Zn-KPA and Zn-PVA) were prepared successfully. A comparison of Zn-KPA and Zn-PVA SAPs was conducted. The effects of cross-linking on water absorption were investigated. The Zn-PVA superabsorbent polymer has a maximum swelling capacity of 407%, while the swelling ratio of the Zn-KPA was 304%. Thus, these prepared superabsorbent polymers could be used for agricultural applications such as water storage. With increasing zinc chloride content and time, superabsorbent polymers’ swelling capacity has considerably improved

    Reusing Iraqi Construction and Aggregates Waste to Manu-facturing Eco-Friendly Polymer Concrete

    Get PDF
    The recycling and reusing of waste materials to produce suitable materials is very important subjects to scientific research in world now, because the decrease natural resources and create a hole or risk in future of the world. The aim of our research to produce polymer concrete (PC) has high mechanical and physical characteristic. This PC was prepared by using the waste of aggregates and demolitions to make PC have good mechanical and physical characteristic with low cost as compared as cement concrete. In this research different types of construction and demolition waste were used as aggregates replacement (i.e. waste of cement/concrete debris, waste of ceramics and the waste of blocks) while the type of polymer resins (i.e. Epoxy) as cement replacements. The weight percentages of resin were changed within (20, 25 and 30) % to manufacture this polymer concrete. The tests we done like physical such as den-sity and mechanical such as compressive strength, flexural strength. Splitting tensile strength and Schmidt hammer rebound hardness

    Using Polyethylene Glycol to Produce Self Cured Cement Mortar

    Get PDF
    The capacity of self-curing admixture is to reduce the evaporation of water from mortar, and subsequently they increase the ability of water retention from mortar contrasted with those traditionally cured mortar. Polymeric phase is disperse in cement causing diminish in water absorption and Likewise its connection with hydrating cement create further bond formation which lead to the increment in strength. In this study two group of mortar samples were prepared, first group consist reference and fly ash mortar, second group prepare with admixtures of polymer were PEG 400 used as self-curing agent in this study. Flow test and setting time performed on fresh mortar to reach to the optimum standard specifications. Two mechanical test were carried out include compressive, tensile strength tests, the effect of PEG 400 on bulk density of polymer-modified hardened mortar also studied. The optimum results observed at the age of curing 28 days for PEG wt% 1and 3 were 39.4 and 37.7 MPa for compressive strength tests respectively, and the tensile strength at the age of curing 28 days for PEG wt% 1and 3 were 3.67 and 4.1 MPa respectively, bulk density decrease when increasing the percentage of PEG

    Preparation and studying of some properties of polymer composites reinforced with natural and artificial fibers

    Get PDF
    This work concerns the thermal and sound insulation as well as the mechanical properties of polymer matrix composite reinforced with glass fibers. These fibers may have dangerous effect during handling, for example the glass fibers might cause some damage to the eyes, lungs and even skin. For this reason the present work, investigates the behavior of polymer composite reinforced with natural fibers (Plant fibers) as replacement to glass fibers. Unsaturated Polyester resin was used as matrix material reinforced with two types of fibers, one of them is artificial (Glass fibers) and the other type is natural (Jute, Fronds Palm and Reed Fibers) by hand lay-up technique. All fibers are untreated with any chemical solvent. The Percentage of mixing was (90 wt. %) of the matrix while the weight fraction of each type of fibers was fixed (10 wt. %). The mechanical tests included impact and flexural strength tests. The results showed that the impact strength and flexural strength of the composites reinforced with Jute fibers is higher than that of Glass fibers and other natural fibers. The coefficients of thermal conductivity of the composites were measured by Lee's disc apparatus, the results show that the thermal insulation of the composite reinforced with jute fibers is higher than that of glass fibers and other natural fibers. The acoustic insulation of the composites reinforced with Jute fibers showed excellent result in insulation compared with glass fibers and other natural fibers

    Using the plastic wastes in fabrication of composite materials for different applications

    Get PDF
    This study suggests using the recycled plastic waste to prepare the polymer matrix composite (PMCs) to use in different applications. Composite materials were prepared by mixing the polyester resin (UP) with plastic waste, two types of plastic waste were used in this work included polyethylene-terephthalate (PET) and Polyvinyl chloride (PVC) with varies weight fractions (0, 5, 10, 15, 20 and 25 %) added as a filler in flakes form. Charpy impact test was performed on the prepared samples to calculate the values of impact strength (I.S). Flexural and hardness tests were carried out to calculate the values of flexural strength and hardness. Acoustic insulation and optical microscope tests were carried out. In general, it is found that UP/PVC composite exhibit the optimum values compared to UP/PET composite in all properties under test. From the experimental results, it can be concluded that the prepared composites from the waste could be utilized as precast or partitions inside the buildings with improved mechanical propertie

    Polymer-Impregnated Cement Mortar: Effects of PEG, PAM, and PVA on Mechanical Properties

    No full text
    The brittleness and porosity of cement mortar leads to low compressive, flexural, and tensile strengths and poor hardness, making it susceptible to environmental degradation. This study aimed to improve the mechanical and physical properties of cement mortar using a simple and cost-effective approach of impregnating pre-cured hardened mortar with polymers. Three polymers - polyethylene glycol (PEG), polyacrylamide (PAM), and polyvinyl alcohol (PVA) - were used for impregnation. The polymers were blended with a magnetic stirrer and the impregnation was performed via three methods: vacuum, ultrasound, and 24-hour immersion. The results showed significant improvements in mechanical and physical properties. PEG-impregnated samples exhibited the highest compressive strength (24.47 MPa), flexural strength (1.38 MPa), and splitting tensile strength (2.08 MPa) compared to reference samples with 17 MPa, 0.52 MPa, and 1.35 MPa respectively. PAM-impregnated cement mortar displayed the highest hardness value of 81 versus 70.08 for the reference sample. Optimal results were achieved via the vacuum method, with increases in bulk density. The polymer impregnation filled pores and improved bonding, enhancing the mechanical properties of the brittle cement mortar

    Morphology and Mechanical Properties of (Epoxy/PVC) Blend

    No full text
    In this research, the morphology and mechanical properties of (Epoxy/PVC) blend were investigated. (EP/PVC) blend was prepared by manual mixing of epoxy resin with different weight ratios of (Poly vinyl chloride (PVC) after dissolving it in cyclohexanon). Five sheets of polymer blends in wt% included (0%, 5%, 10%, 15% and 20%) of PVC were prepared at room temperature. Tests were carried out to study some mechanical properties for these blends and compared with the properties of pure epoxy. The morphology of the prepared materials was examined to study the compatibility nature between the two polymers under work. It was found that the best ratio of addition is (20%) of PVC. This percentage gave the highest value of tensile strength compared with other percentages of mixing for (EP/PVC) blends
    corecore