27 research outputs found

    The impact of inlet boundary layer thickness on the unsteady aerodynamics of S-duct intakes

    Get PDF
    The need to reduce aero-engine emissions and direct operating costsis driving the civil aerospace sectortowards considering more integrated propulsion systems. Many of the proposed novel aircraft architectures employ convoluted intakes for either the aero-engine or propulsion system. These intakes are characterized by unsteady distortion that can hinder the performance and operability of the propulsion system. This work assessesthe impact of the inlet boundary layer on the unsteady aerodynamics of an S-duct intake using time-resolved particle image velocimetry at the aerodynamic interface plane.An increase in the boundary layer thickness at the intake inlet increasesthe flow unsteadiness on the swirl angle by up to 40% relativeto the baseline case. The azimuthal orientation of the inlet boundary layer modifies the intensity and topology of the most frequent swirl distortion pattern. For a relatively thick inlet boundary layer, the reduction of the dominant frequencies associated withthe unsteady swirl angle is postulated to be beneficial for the engine stability. Overall, this works gives guidelines for the integration between the intake and the engine across the range of potential inlet operating conditions

    Effect of pre-sowing magnetic treatment of seeds with bio- and mineral fertilization on the soybean cultivated in a saline calcareous soil

    Get PDF
    Bio-farming is an eco-friendly advance that minimizes the required chemical additives for optimizing the quality of crops that their storage is often accompanied by seeds’ components degradation. Magnetic treatment of seed was considered as a promising tool improves germination and growth. This study aims to evaluate the effect of individual and combined application of bio-fertilizers and the N-P-K mineral fertilizers preceded by magnetic treatment of dry and/or water-soaked seeds before sowing on the yield and quality of soybean cultivated in a saline soil.The field experiment was carried out in a split-split plot design with triplicates. The main two factors (F1) were not bio-fertilized and bio-fertilized plots. The sub-factors (F2) were three application rates (A: 50%, B: 75%, and C: 100%) of recommended doses of the three N, P, K fertilizers. The sub-sub factors (F3) were seeds not magnetically treated (NM) and magnetically treated (M). All factors were studied for dry soybean seeds (without soaking) and soaked seeds in magnetically treated water. After harvesting, soil and plant samples were analyzed. The most significant increase in the soybean seed yield (kg ha-1) was by 49.98% for the bio-fertilized magnetized dry seeds at 75% and 100% mineral N-P-K fertilization compared with the NM soaked seeds at 50% N-P-K (A rate) without bio-fertilization. The 75% mineral fertilization significantly increased the protein (%) by 41.69% and decreased the proline (mg g-1dw) by 46.68%. Magnetic treatment of seeds before cultivation and combined bio/mineral N-P-K fertilization reduced the Proline that alleviats the stress conditions

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    A review of the methods of modeling multi-phase flows within different microchannels shapes and their applications

    No full text
    In industrial processes, the microtechnology concept refers to the operation of small devices that integrate the elements of operational and reaction units to save energy and space. The advancement of knowledge in the field of microfluidics has resulted in fabricating devices with different applications in micro and nanoscales. Micro-and nano-devices can provide energy-efficient systems due to their high thermal performance. Fluid flow in microchannels and microstructures has been widely considered by researchers in the last two decades. In this paper, a review study on fluid flow within microstructures is performed. The present study aims to present the results obtained in previous studies on this type of system. First, different types of flows in microchannels are examined. The present article will then review previous articles and present a general summary in each section. Then, the multi-phase flows inside the microchannels are discussed, and the flows inside the micropumps, microturbines, and micromixers are evaluated. According to the literature review, it is found that the use of microstructures enhances energy efficiency. The results of previous investigations revealed that the use of nanofluids as a working fluid in microstructures improves energy efficiency. Previous studies have demonstrated special attention to the design aspects of microchannels and micro-devices compared to other design strategies to improve their performance. Finally, general concluding remarks are presented, and the existing challenges in the use of these devices and suggestions for future investigations are presented.Emerging Material
    corecore