1,830 research outputs found

    Standard Coupling Unification in SO(10), Hybrid Seesaw Neutrino Mass and Leptogenesis, Dark Matter, and Proton Lifetime Predictions

    Full text link
    We discuss gauge coupling unification of the SM descending directly from SO(10) while providing solutions to the three outstanding problems: neutrino masses, dark matter, and the baryon asymmetry of the universe. Conservation of matter parity as gauged discrete symmetry in the model calls for high-scale spontaneous symmetry breaking through 126H{126}_H Higgs representation. This naturally leads to the hybrid seesaw formula for neutrino masses mediated by heavy scalar triplet and right-handed neutrinos. The seesaw formula predicts two distinct patterns of RHν\nu masses, one hierarchical and another not so hierarchical (or compact) when fitted with the neutrino oscillation data. Predictions of the baryon asymmetry via leptogenesis are investigated through the decays of both the patterns of RHν\nu masses. A complete flavor analysis has been carried out to compute CP-asymmetries and solutions to Boltzmann equations have been utilized to predict the baryon asymmetry. The additional contribution to vertex correction mediated by the heavy left-handed triplet scalar is noted to contribute as dominantly as other Feynman diagrams. We have found successful predictions of the baryon asymmetry for both the patterns of RHν\nu masses. The triplet fermionic dark matter at the TeV scale carrying even matter parity is naturally embedded into the non-standard fermionic representation 45F{45}_F of SO(10). In addition to the triplet scalar and the triplet fermion, the model needs a nonstandard color octet fermion of mass ∼107\sim 10^7 GeV to achieve precision gauge coupling unification. Threshold corrections due to superheavy components of 126H{126}_H and other representations are estimated and found to be substantial. It is noted that the proton life time predicted by the model is accessible to the ongoing and planned experiments over a wide range of parameter space.Comment: 58 pages PDFLATEX, 19 Figures, Revised as suggested by JHEP Revie

    Phase transitions in Lu2_2Ir3_3Si5_5

    Get PDF
    We report the results of our investigations on a polycrystalline sample of Lu2_2Ir3_3Si5_5 which crystallizes in the U2_2Co3_3Si5_5 type structure (Ibam). These investigations comprise powder X-ray diffraction, magnetic susceptibility, electrical resistivity and high temperature (120-300 K) heat capacity studies. Our results reveal that the sample undergoes a superconducting transition below 3.5 K. It also undergoes a first order phase transition between 150-250 K as revealed by an upturn in the resistivity, a diasmagnetic drop in the magnetic susceptibility and a large anomaly (20-30 J/mol K) in the specific heat data. We observe a huge thermal hysteresis of almost 45 K between the cooling and warming data across this high temperature transition in all our measurements. Low temperature X-ray diffraction measurements at 87 K reveals that the compound undergoes a structural change at the high temperature transition. Resistivity data taken in repeated cooling and warming cycles indicate that at the high temperature transition, the system goes into a highly metastable state and successive heating/cooling curves are found to lie above the previous one and the resistance keeps increasing with every thermal cycle. The room temperature resistance of a thermaly cycled piece of the sample decays exponentialy with time with a decay time constant estimated to be about 104^4 secs. The anomaly (upturn) in the resistivity and the large drop (almost 45%) in the susceptibility across the high temperature transition suggest that the observed structural change is accompanied or induced by an electronic transition.Comment: 7 figures, 1 table and 18 reference
    • …
    corecore