25 research outputs found
Magnetic field dependence of antiferromagnetic resonance in NiO
We report on measurements of magnetic field and temperature dependence of antiferromagnetic resonances in the prototypical antiferromagnet NiO. The frequencies of the magnetic resonances in the vicinity of 1 THz have been determined in the time-domain via time-resolved Faraday measurements after selective excitation by narrow-band superradiant terahertz (THz) pulses at temperatures down to 3 K and in magnetic fields up to 10 T. The measurements reveal two antiferromagnetic resonance modes, which can be distinguished by their characteristic magnetic field dependencies. The nature of the two modes is discussed by comparison to an eight-sublattice antiferromagnetic model, which includes superexchange between the next-nearest-neighbor Ni spins, magnetic dipolar interactions, cubic magneto-crystalline anisotropy, and Zeeman interaction with the external magnetic field. Our study indicates that a two-sublattice model is insufficient for the description of spin dynamics in NiO, while the magnetic-dipolar interactions and magneto-crystalline anisotropy play important roles
Perturbative regime of terahertz high-harmonics generation in topological insulators
In this Letter, terahertz high harmonic generation processes in topological
insulators of the bismuth and antimony chalcogenides family are investigated.
Field conversion efficiencies are determined and clean cubic and quintic
power-law scaling is observed for third and fifth harmonics, up to driving
terahertz fields of 140 kV/cm. This is in contrast to all previous experiments
on terahertz harmonics generation in Dirac materials where a non-perturbative
regime has been observed already at few 10s kV/cm driving fields. Our nonlinear
THz spectroscopy experiments are complemented by THz pump - optical probe
measurements showing distinctly different relaxation dynamics of the carriers
in the topologically-protected Dirac states at the surfaces and the bulk. The
THz-induced dynamics of surface states reveal ultrafast relaxation that
prevents accumulation effects, and results in a clear perturbative regime of
THz harmonics generation that is different to graphene or Dirac semimetals with
their slower relaxation times in the few ps regime
Terahertz signatures of ultrafast Dirac fermion relaxation at the surface of topological insulators
Topologically protected surface states present rich physics and promising spintronic, optoelectronic, and photonic applications that require a proper understanding of their ultrafast carrier dynamics. Here, we investigate these dynamics in topological insulators (TIs) of the bismuth and antimony chalcogenide family, where we isolate the response of Dirac fermions at the surface from the response of bulk carriers by combining photoexcitation with below-bandgap terahertz (THz) photons and TI samples with varying Fermi level, including one sample with the Fermi level located within the bandgap. We identify distinctly faster relaxation of charge carriers in the topologically protected Dirac surface states (few hundred femtoseconds), compared to bulk carriers (few picoseconds). In agreement with such fast cooling dynamics, we observe THz harmonic generation without any saturation effects for increasing incident fields, unlike graphene which exhibits strong saturation. This opens up promising avenues for increased THz nonlinear conversion efficiencies, and high-bandwidth optoelectronic and spintronic information and communication applications.Parts of this research were carried out at ELBE at the Helmholtz-Zentrum Dresden-Rossendorf e.V., a member of the Helmholtz Association. The films are grown in IRE RAS within the framework of the state task. This work was supported by the RFBR grants Nos. 18-29-20101, 19-02-00598. N.A., S.K., and I.I. acknowledge support from the European Union’s Horizon 2020 research and innovation program under grant agreement No. 737038 (TRANSPIRE). T.V.A.G.O. and L.M.E. acknowledge the support by the Würzburg-Dresden Cluster of Excellence on Complexity and Topology in Quantum Matter (ct.qmat). K.-J.T. acknowledges funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 804349 (ERC StG CUHL) and financial support through the MAINZ Visiting Professorship. ICN2 was supported by the Severo Ochoa program from Spanish MINECO Grant No. SEV-2017-0706
Narrow-band tunable terahertz emission from ferrimagnetic Mn3-xGa thin films
Narrow-band terahertz emission from coherently excited spin precession in metallic ferrimagnetic Mn3-xGa Heusler alloy nanofilms has been observed. The efficiency of the emission, per nanometer film thickness, is comparable or higher than that of classical laser-driven terahertz sources based on optical rectification. The center frequency of the emission from the films can be tuned precisely via the film composition in the range of 0.20-0.35 THz, making this type of metallic film a candidate for efficient on-chip terahertz emitters. Terahertz emission spectroscopy is furthermore shown to be a sensitive probe of magnetic properties of ultra-thin films. Published by AIP Publishing
Fano interference of the Higgs mode in cuprate high-Tc superconductors
Despite decades of search for the pairing boson in cuprate high-Tc
superconductors, its identity still remains debated to date. For this reason,
spectroscopic signatures of electron-boson interactions in cuprates have always
been a center of attention. For example, the kinks in the quasiparticle
dispersion observed by angle-resolved photoemission spectroscopy (ARPES)
studies have motivated a decade-long investigation of electron-phonon as well
as electron-paramagnon interactions in cuprates. On the other hand, the overlap
between the charge-order correlations and the pseudogap in the cuprate phase
diagram has also generated discussions about the potential link between them.
In the present study, we provide a fresh perspective on these intertwined
interactions using the novel approach of Higgs spectroscopy, i.e. an
investigation of the amplitude oscillations of the superconducting order
parameter driven by a terahertz radiation. Uniquely for cuprates, we observe a
Fano interference of its dynamically driven Higgs mode with another collective
mode, which we reveal to be charge density wave fluctuations from an extensive
doping- and magnetic field-dependent study. This finding is further
corroborated by a mean field model in which we describe the microscopic
mechanism underlying the interaction between the two orders. Our work
demonstrates Higgs spectroscopy as a novel and powerful technique for
investigating intertwined orders and microscopic processes in unconventional
superconductors
High-field high-repetition-rate sources for the coherent THz control of matter
Ultrashort flashes of THz light with low photon energies of a few meV, but strong electric or magnetic field transients have recently been employed to prepare various fascinating nonequilibrium states in matter. Here we present a new class of sources based on superradiant enhancement of radiation from relativistic electron bunches in a compact electron accelerator that we believe will revolutionize experiments in this field. Our prototype source generates high-field THz pulses at unprecedented quasicontinuous-wave repetition rates up to the MHz regime. We demonstrate parameters that exceed state-of-the-art laser-based sources by more than 2 orders of magnitude. The peak fields and the repetition rates are highly scalable and once fully operational this type of sources will routinely provide 1 MV/cm electric fields and 0.3 T magnetic fields at repetition rates of few 100 kHz. We benchmark the unique properties by performing a resonant coherent THz control experiment with few 10 fs resolution
Grating-graphene metamaterial as a platform for terahertz nonlinear photonics
Nonlinear optics is an increasingly important field for scientific and
technological applications, owing to its relevance and potential for optical
and optoelectronic technologies. Currently, there is an active search for
suitable nonlinear material systems with efficient conversion and small
material footprint. Ideally, the material system should allow for
chip-integration and room-temperature operation. Two-dimensional materials are
highly interesting in this regard. Particularly promising is graphene, which
has demonstrated an exceptionally large nonlinearity in the terahertz regime.
Yet, the light-matter interaction length in two-dimensional materials is
inherently minimal, thus limiting the overall nonlinear-optical conversion
efficiency. Here we overcome this challenge using a metamaterial platform that
combines graphene with a photonic grating structure providing field
enhancement. We measure terahertz third-harmonic generation in this
metamaterial and obtain an effective third-order nonlinear susceptibility with
a magnitude as large as 310m/V, or 21 esu, for a
fundamental frequency of 0.7 THz. This nonlinearity is 50 times larger than
what we obtain for graphene without grating. Such an enhancement corresponds to
third-harmonic signal with an intensity that is three orders of magnitude
larger due to the grating. Moreover, we demonstrate a field conversion
efficiency for the third harmonic of up to 1% using a moderate field
strength of 30 kV/cm. Finally we show that harmonics beyond the third are
enhanced even more strongly, allowing us to observe signatures of up to the
9 harmonic. Grating-graphene metamaterials thus constitute an
outstanding platform for commercially viable, CMOS compatible, room
temperature, chip-integrated, THz nonlinear conversion applications
WOMENS SECURITY GADGET
Purpose of the project is to provide security for woman. In case of emergency situations woman will press an emergency button which will activates the GPS for location tracking and a SMS is sent to Emergency contact number. When the person is trying to harass or abuse a woman he will get shock by the device and the woman will get some time to rescue so she can save herself , simultaneously screaming alarm will get turn ON. When screaming alarm will turn ON people from the surrounding will get gathered to save woman
Levofloxacin-induced bullous fixed drug eruption: A rare case report
Drug-induced cutaneous adverse drug reactions are very much common, especially with antibiotics. Fluoroquinolones are widely used antibiotics for different types of infective conditions. However, dermatological adverse drug reactions to this category of antibiotics are very rare but many times fatal. Bullous fixed drug eruption (FDE), being one of them, is very important to watch for. Here, we are reporting levofloxacin-induced bullous FDE in elderly hypertensive patient