7 research outputs found

    A Cloud-native Approach for Processing of Crowdsourced GNSS Observations and Machine Learning at Scale: A Case Study from the CAMALIOT Project

    Get PDF
    The era of modern smartphones, running on Android version 7.0 and higher, facilitates nowadays acquisition of raw dual-frequency multi-constellation GNSS observations. This paves the way for GNSS community data to be potentially exploited for precise positioning, GNSS reflectometry or geoscience applications at large. The continuously expanding global GNSS infrastructure along with the enormous volume of prospective GNSS community data bring, however, major challenges related to data acquisition, its storage, and subsequent processing for deriving various parameters of interest. In addition, such large datasets cannot be managed manually anymore, leading thus to the need for fully automated and sophisticated data processing pipelines. Application of Machine Learning Technology for GNSS IoT data fusion (CAMALIOT) was an ESA NAVISP Element 1 project (NAVISP-EL1-038.2) with activities aiming to address the aforementioned points related to GNSS community data and their exploitation for scientific applications with the use of Machine Learning (ML). This contribution provides an overview of the CAMALIOT project with information on the designed and implemented cloud-native software for GNSS processing and ML at scale, developed Android application for retrieving GNSS observations from the modern generation of smartphones through dedicated crowdsourcing campaigns, related data ingestion and processing, and GNSS analysis concerning both conventional and smartphone GNSS observations. With the use of the developed GNSS engine employing an Extended Kalman Filter, example processing results related to the Zenith Total Delay (ZTD) and Slant Total Electron Content (STEC) are provided based on the analysis of observations collected with geodetic-grade GNSS receivers and from local measurement sessions involving Xiaomi Mi 8 that collected GNSS observations using the developed Android application. For smartphone observations, ZTD is derived in a differential manner based on a single-frequency double-difference approach employing GPS and Galileo observations, whereas satellite-specific STEC time series are obtained through carrier-to-code leveling based on the geometry-free linear combination of observations from both GPS and Galileo constellations. Although the ZTD and STEC time series from smartphones were derived on a demonstration basis, a rather good level of consistency of such estimates with respect to the reference time series was found. For the considered periods, the RMS of differences between the derived smartphone-based time series of differential zenith wet delay and reference values were below 3.1 mm. In terms of satellite-specific STEC time series expressed with respect to the reference STEC time series, RMS of the offset-reduced differences below 1.2 TECU was found. Smartphone-based observations require special attention including additional processing steps and a dedicated parameterization in order to be able to acquire reliable atmospheric estimates. Although with lower measurement quality compared to traditional sources of GNSS data, an augmentation of ground-based networks of fixed high-end GNSS receivers with GNSS-capable smartphones would however, form an interesting source of complementary information for various studies relying on GNSS observations

    The CAMALIOT project

    Get PDF
    This invited presentation was given at an information event about the European Space Agency’s (ESA) Navigation Innovation and Support Programme (NAVISP) hosted by the Austrian Agency for the Promotion of Science (FFG) in preparation for the ESA Ministerial Conference 2022. The presentation was about the CAMALIOT project, which is currently funded through NAVISP and by FFG, outlining the initial results and what the next steps in the project are. In particular, information about the CAMALIOT crowdsourcing campaign (being run by IIASA) was provided as well as the status of the CAMALIOT machine learning infrastructure and the science uses cases in the project

    Machine Learning-Based Exploitation of Crowdsourced GNSS Data for Atmospheric Studies

    No full text
    The Global Navigation Satellite System (GNSS) is a well-recognized tool to probe the Earth’s atmosphere. This contribution highlights how GNSS data collected from smartphones of voluntary contributors can be used to determine parameters of the troposphere and ionosphere. In this regard, the application of machine learning (ML) to characterize the quality of the crowd-sourced data and model atmospheric parameters is discussed. We demonstrate that in certain cases, GNSS data from smartphones can reach a precision that would allow such data to densify observations from existing geodetic infrastructures
    corecore