9 research outputs found

    Molecular Recalibration of PD-1+ Antigen-Specific T Cells from Blood and Liver.

    Get PDF
    Checkpoint inhibitors and adoptive cell therapy provide promising options for treating solid cancers such as HBV-related HCC, but they have limitations. We tested the potential to combine advantages of each approach, genetically reprogramming T cells specific for viral tumor antigens to overcome exhaustion by down-modulating the co-inhibitory receptor PD-1. We developed a novel lentiviral transduction protocol to achieve preferential targeting of endogenous or TCR-redirected, antigen-specific CD8 T cells for shRNA knockdown of PD-1 and tested functional consequences for antitumor immunity. Antigen-specific and intrahepatic CD8 T cells transduced with lentiviral (LV)-shPD-1 consistently had a marked reduction in PD-1 compared to those transduced with a control lentiviral vector. PD-1 knockdown of human T cells rescued antitumor effector function and promoted killing of hepatoma cells in a 3D microdevice recapitulating the pro-inflammatory PD-L1hi liver microenvironment. However, upon repetitive stimulation, PD-1 knockdown drove T cell senescence and induction of other co-inhibitory pathways. We provide the proof of principle that T cells with endogenous or genetically engineered specificity for HBV-associated HCC viral antigens can be targeted for functional genetic editing. We show that PD-1 knockdown enhances immediate tumor killing but is limited by compensatory engagement of alternative co-inhibitory and senescence program upon repetitive stimulation

    Diabetes mortality and trends before 25 years of age: an analysis of the Global Burden of Disease Study 2019

    Get PDF
    Background: Diabetes, particularly type 1 diabetes, at younger ages can be a largely preventable cause of death with the correct health care and services. We aimed to evaluate diabetes mortality and trends at ages younger than 25 years globally using data from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019. Methods: We used estimates of GBD 2019 to calculate international diabetes mortality at ages younger than 25 years in 1990 and 2019. Data sources for causes of death were obtained from vital registration systems, verbal autopsies, and other surveillance systems for 1990–2019. We estimated death rates for each location using the GBD Cause of Death Ensemble model. We analysed the association of age-standardised death rates per 100 000 population with the Socio-demographic Index (SDI) and a measure of universal health coverage (UHC) and described the variability within SDI quintiles. We present estimates with their 95% uncertainty intervals. Findings: In 2019, 16 300 (95% uncertainty interval 14 200 to 18 900) global deaths due to diabetes (type 1 and 2 combined) occurred in people younger than 25 years and 73·7% (68·3 to 77·4) were classified as due to type 1 diabetes. The age-standardised death rate was 0·50 (0·44 to 0·58) per 100 000 population, and 15 900 (97·5%) of these deaths occurred in low to high-middle SDI countries. The rate was 0·13 (0·12 to 0·14) per 100 000 population in the high SDI quintile, 0·60 (0·51 to 0·70) per 100 000 population in the low-middle SDI quintile, and 0·71 (0·60 to 0·86) per 100 000 population in the low SDI quintile. Within SDI quintiles, we observed large variability in rates across countries, in part explained by the extent of UHC (r2=0·62). From 1990 to 2019, age-standardised death rates decreased globally by 17·0% (−28·4 to −2·9) for all diabetes, and by 21·0% (–33·0 to −5·9) when considering only type 1 diabetes. However, the low SDI quintile had the lowest decline for both all diabetes (−13·6% [–28·4 to 3·4]) and for type 1 diabetes (−13·6% [–29·3 to 8·9]). Interpretation: Decreasing diabetes mortality at ages younger than 25 years remains an important challenge, especially in low and low-middle SDI countries. Inadequate diagnosis and treatment of diabetes is likely to be major contributor to these early deaths, highlighting the urgent need to provide better access to insulin and basic diabetes education and care. This mortality metric, derived from readily available and frequently updated GBD data, can help to monitor preventable diabetes-related deaths over time globally, aligned with the UN's Sustainable Development Targets, and serve as an indicator of the adequacy of basic diabetes care for type 1 and type 2 diabetes across nations. Funding: Bill & Melinda Gates Foundation

    Signaling Components and Pathways

    No full text

    Peripheral Nerve Injury Modulates Neurotrophin Signaling in the Peripheral and Central Nervous System

    No full text

    Serine/threonine-specific protein phosphatases and cancer

    No full text
    corecore