244 research outputs found
SIEGE: Smoking Induced Epithelial Gene Expression Database
The SIEGE (Smoking Induced Epithelial Gene Expression) database is a clinical resource for compiling and analyzing gene expression data from epithelial cells of the human intra-thoracic airway. This database supports a translational research study whose goal is to profile the changes in airway gene expression that are induced by cigarette smoke. RNA is isolated from airway epithelium obtained at bronchoscopy from current-, former- and never-smoker subjects, and hybridized to Affymetrix HG-U133A Genechips, which measure the level of expression of βΌ22β500 human transcripts. The microarray data generated along with relevant patient information is uploaded to SIEGE by study administrators using the database's web interface, found at http://pulm.bumc.bu.edu/siegeDB. PERL-coded scripts integrated with SIEGE perform various quality control functions including the processing, filtering and formatting of stored data. The R statistical package is used to import database expression values and execute a number of statistical analyses including t-tests, correlation coefficients and hierarchical clustering. Values from all statistical analyses can be queried through CGI-based tools and web forms found on the βSearchβ section of the database website. Query results are embedded with graphical capabilities as well as with links to other databases containing valuable gene resources, including Entrez Gene, GO, Biocarta, GeneCards, dbSNP and the NCBI Map Viewer
SIEGE: Smoking Induced Epithelial Gene Expression Database
The SIEGE (Smoking Induced Epithelial Gene Expression) database is a clinical resource for compiling and analyzing gene expression data from epithelial cells of the human intra-thoracic airway. This database supports a translational research study whose goal is to profile the changes in airway gene expression that are induced by cigarette smoke. RNA is isolated from airway epithelium obtained at bronchoscopy from current-, former- and never-smoker subjects, and hybridized to Affymetrix HG-U133A Genechips, which measure the level of expression of βΌ22β500 human transcripts. The microarray data generated along with relevant patient information is uploaded to SIEGE by study administrators using the database's web interface, found at http://pulm.bumc.bu.edu/siegeDB. PERL-coded scripts integrated with SIEGE perform various quality control functions including the processing, filtering and formatting of stored data. The R statistical package is used to import database expression values and execute a number of statistical analyses including t-tests, correlation coefficients and hierarchical clustering. Values from all statistical analyses can be queried through CGI-based tools and web forms found on the βSearchβ section of the database website. Query results are embedded with graphical capabilities as well as with links to other databases containing valuable gene resources, including Entrez Gene, GO, Biocarta, GeneCards, dbSNP and the NCBI Map Viewer
Comparison of Nasal Epithelial Smoking-Induced Gene Expression on Affymetrix Exon 1.0 and Gene 1.0 ST Arrays
We have previously defined the impact of tobacco smoking on nasal epithelium gene expression using Affymetrix Exon 1.0βST arrays. In this paper, we compared the performance of the Affymetrix GeneChip Human Gene 1.0βST array with the Human Exon 1.0βST array for detecting nasal smoking-related gene expression changes. RNA collected from the nasal epithelium of five current smokers and five never smokers was hybridized to both arrays. While the intersample correlation within each array platform was relatively higher in the Gene array than that in the Exon array, the majority of the genes most changed by smoking were tightly correlated between platforms. Although neither array dataset was powered to detect differentially expressed genes (DEGs) at a false discovery rate (FDR) <0.05, we identified more DEGs than expected by chance using the Gene ST array. These findings suggest that while both platforms show a high degree of correlation for detecting smoking-induced differential gene expression changes, the Gene ST array may be a more cost-effective platform in a clinical setting for gene-level genomewide expression profiling and an effective tool for exploring the host response to cigarette smoking and other inhaled toxins
Genetic Variation and Antioxidant Response Gene Expression in the Bronchial Airway Epithelium of Smokers at Risk for Lung Cancer
Prior microarray studies of smokers at high risk for lung cancer have demonstrated that heterogeneity in bronchial airway epithelial cell gene expression response to smoking can serve as an early diagnostic biomarker for lung cancer. As a first step in applying functional genomic analysis to population studies, we have examined the relationship between gene expression variation and genetic variation in a central molecular pathway (NRF2-mediated antioxidant response) associated with smoking exposure and lung cancer. We assessed global gene expression in histologically normal airway epithelial cells obtained at bronchoscopy from smokers who developed lung cancer (SC, n=20), smokers without lung cancer (SNC, n=24), and never smokers (NS, n=8). Functional enrichment analysis showed that the NRF2-mediated, antioxidant response element (ARE)-regulated genes, were significantly lower in SC, when compared with expression levels in SNC. Importantly, we found that the expression of MAFG (a binding partner of NRF2) was correlated with the expression of ARE genes, suggesting MAFG levels may limit target gene induction. Bioinformatically we identified single nucleotide polymorphisms (SNPs) in putative ARE genes and to test the impact of genetic variation, we genotyped these putative regulatory SNPs and other tag SNPs in selected NRF2 pathway genes. Sequencing MAFG locus, we identified 30 novel SNPs and two were associated with either gene expression or lung cancer status among smokers. This work demonstrates an analysis approach that integrates bioinformatics pathway and transcription factor binding site analysis with genotype, gene expression and disease status to identify SNPs that may be associated with individual differences in gene expression and/or cancer status in smokers. These polymorphisms might ultimately contribute to lung cancer risk via their effect on the airway gene expression response to tobacco-smoke exposure.Intramural Research Program of the National Institute of Environmental Health Sciences; National Institutes of Health (Z01 ES100475, U01ES016035, R01CA124640
Alterations in gene expression in T1Ξ± null lung: a model of deficient alveolar sac development
BACKGROUND: Development of lung alveolar sacs of normal structure and size at late gestation is necessary for the gas exchange process that sustains respiration at birth. Mice lacking the lung differentiation gene T1Ξ± [T1Ξ±(-/-)] fail to form expanded alveolar sacs, resulting in respiratory failure at birth. Since little is known about the molecular pathways driving alveolar sacculation, we used expression microarrays to identify genes altered in the abnormal lungs and, by inference, may play roles in normal lung morphogenesis. RESULTS: Altered expression of genes related to cell-cell interaction, such as ephrinA3, are observed in T1Ξ±(-/-) at E18.5. At term, FosB, Egr1, MPK-1 and Nur77, which can function as negative regulators of the cell-cycle, are down-regulated. This is consistent with the hyperproliferation of peripheral lung cells in term T1Ξ± (-/-) lungs reported earlier. Biochemical assays show that neither PCNA nor p21 are altered at E18.5. At term in contrast, PCNA is increased, and p21 is decreased. CONCLUSION: This global analysis has identified a number of candidate genes that are significantly altered in lungs in which sacculation is abnormal. Many genes identified were not previously associated with lung development and may participate in formation of alveolar sacs prenatally
Reversible and permanent effects of tobacco smoke exposure on airway epithelial gene expression
Oligonucleotide microarray analysis revealed 175 genes that are differentially expressed in large airway epithelial cells of people who currently smoke compared with those who never smoked, with 28 classified as irreversible, 6 as slowly reversible, and 139 as rapidly reversible
Smoking-induced gene expression changes in the bronchial airway are reflected in nasal and buccal epithelium
<p>Abstract</p> <p>Background</p> <p>Cigarette smoking is a leading cause of preventable death and a significant cause of lung cancer and chronic obstructive pulmonary disease. Prior studies have demonstrated that smoking creates a field of molecular injury throughout the airway epithelium exposed to cigarette smoke. We have previously characterized gene expression in the bronchial epithelium of never smokers and identified the gene expression changes that occur in the mainstem bronchus in response to smoking. In this study, we explored relationships in whole-genome gene expression between extrathorcic (buccal and nasal) and intrathoracic (bronchial) epithelium in healthy current and never smokers.</p> <p>Results</p> <p>Using genes that have been previously defined as being expressed in the bronchial airway of never smokers (the "normal airway transcriptome"), we found that bronchial and nasal epithelium from non-smokers were most similar in gene expression when compared to other epithelial and nonepithelial tissues, with several antioxidant, detoxification, and structural genes being highly expressed in both the bronchus and nose. Principle component analysis of previously defined smoking-induced genes from the bronchus suggested that smoking had a similar effect on gene expression in nasal epithelium. Gene set enrichment analysis demonstrated that this set of genes was also highly enriched among the genes most altered by smoking in both nasal and buccal epithelial samples. The expression of several detoxification genes was commonly altered by smoking in all three respiratory epithelial tissues, suggesting a common airway-wide response to tobacco exposure.</p> <p>Conclusion</p> <p>Our findings support a relationship between gene expression in extra- and intrathoracic airway epithelial cells and extend the concept of a smoking-induced field of injury to epithelial cells that line the mouth and nose. This relationship could potentially be utilized to develop a non-invasive biomarker for tobacco exposure as well as a non-invasive screening or diagnostic tool providing information about individual susceptibility to smoking-induced lung diseases.</p
- β¦