31 research outputs found

    Stable scalable control of soliton propagation in broadband nonlinear optical waveguides

    Full text link
    We develop a method for achieving scalable transmission stabilization and switching of NN colliding soliton sequences in optical waveguides with broadband delayed Raman response and narrowband nonlinear gain-loss. We show that dynamics of soliton amplitudes in NN-sequence transmission is described by a generalized NN-dimensional predator-prey model. Stability and bifurcation analysis for the predator-prey model are used to obtain simple conditions on the physical parameters for robust transmission stabilization as well as on-off and off-on switching of MM out of NN soliton sequences. Numerical simulations for single-waveguide transmission with a system of NN coupled nonlinear Schr\"odinger equations with 2≤N≤42 \le N \le 4 show excellent agreement with the predator-prey model's predictions and stable propagation over significantly larger distances compared with other broadband nonlinear single-waveguide systems. Moreover, stable on-off and off-on switching of multiple soliton sequences and stable multiple transmission switching events are demonstrated by the simulations. We discuss the reasons for the robustness and scalability of transmission stabilization and switching in waveguides with broadband delayed Raman response and narrowband nonlinear gain-loss, and explain their advantages compared with other broadband nonlinear waveguides.Comment: 37 pages, 7 figures, Eur. Phys. J. D (accepted
    corecore