3 research outputs found

    Response of Nitrous Oxide Flux to Addition of Anecic Earthworms to an Agricultural Field

    Get PDF
    The burrowing and feeding activities of earthworms may have a strong effect on the flux of N2O from agricultural soils. As such, shifts to agricultural management practices that increase the number of earthworms require an understanding of the role of earthworms in N2O dynamics. We conducted a field experiment to examine the effects of addition of anecic earthworms (Lumbricus terrestris) on N2O flux in a field previously planted with corn (Zea mays) in southern Rhode Island, USA. Plots were amended with (15NH4)2SO4 and either 0 (CTL) or 48 L. terrestris m-2 (EW). The flux of N2O, 15N2O and 15N2 was measured over 28 days between October and November 2008. The EW treatment had a significantly higher flux of N2O and 15N2O 1 - 3 days after 15NH4 addition. No treatment effects were observed on 15N2 flux. The addition of earthworms significantly increased (Day 1) and decreased (Day 12) the mole fraction of N2O relative to the CTL. Our results suggest that anecic earthworm additions can increase N2O flux from inorganic fertilizer N amendments, but the effects appear to short-lived

    Accuracy of Rapid Tests Used for Analysis of Advanced Onsite Wastewater Treatment System Effluent

    No full text
    Rapid tests provide an inexpensive, desirable alternative to standard laboratory analyses for testing advanced onsite wastewater treatment system (OWTS) effluent in the field. Despite their potential utility, their accuracy for analysis of effluent from advanced OWTS has not been assessed. We evaluated the accuracy of an initial suite of rapid tests commonly used to analyze wastewater (test strips for ammonium, pH, nitrate, and alkalinity; pH pocket meter; titration kit for dissolved oxygen (DO)) by comparing values obtained in the field to values obtained using standard laboratory methods. We tested final effluent from three different advanced nitrogen removal OWTS technologies sampled monthly for 7 months at 42 different sites within the greater Narragansett Bay watershed in Rhode Island, USA. Significant differences between values obtained using field and standard methods were found only for nitrate and pH test strips when the data were analyzed using ANOVA on ranks. However, regression analysis indicated that all test strip-based rapid methods and the DO titration kit produced values that deviated significantly from correspondence with standard analyses. When effluent samples were analyzed in the laboratory (to minimize sources of variability) using the same rapid tests, significant differences between rapid tests and standard analysis disappeared for all the tests. Evaluation of a suite of alternative rapid tests for ammonium, nitrate, pH, and alkalinity indicated that test kits for NH4+ and multi-analysis test strips for pH provide accurate results in the field. Our results indicate that the accuracy of rapid tests needs to be evaluated under field conditions before they are used to assess effluent from advanced N-removing OWTS
    corecore