4,346 research outputs found

    Data Augmentation for Skin Lesion Analysis

    Full text link
    Deep learning models show remarkable results in automated skin lesion analysis. However, these models demand considerable amounts of data, while the availability of annotated skin lesion images is often limited. Data augmentation can expand the training dataset by transforming input images. In this work, we investigate the impact of 13 data augmentation scenarios for melanoma classification trained on three CNNs (Inception-v4, ResNet, and DenseNet). Scenarios include traditional color and geometric transforms, and more unusual augmentations such as elastic transforms, random erasing and a novel augmentation that mixes different lesions. We also explore the use of data augmentation at test-time and the impact of data augmentation on various dataset sizes. Our results confirm the importance of data augmentation in both training and testing and show that it can lead to more performance gains than obtaining new images. The best scenario results in an AUC of 0.882 for melanoma classification without using external data, outperforming the top-ranked submission (0.874) for the ISIC Challenge 2017, which was trained with additional data.Comment: 8 pages, 3 figures, to be presented on ISIC Skin Image Analysis Worksho

    Knowledge Transfer for Melanoma Screening with Deep Learning

    Full text link
    Knowledge transfer impacts the performance of deep learning -- the state of the art for image classification tasks, including automated melanoma screening. Deep learning's greed for large amounts of training data poses a challenge for medical tasks, which we can alleviate by recycling knowledge from models trained on different tasks, in a scheme called transfer learning. Although much of the best art on automated melanoma screening employs some form of transfer learning, a systematic evaluation was missing. Here we investigate the presence of transfer, from which task the transfer is sourced, and the application of fine tuning (i.e., retraining of the deep learning model after transfer). We also test the impact of picking deeper (and more expensive) models. Our results favor deeper models, pre-trained over ImageNet, with fine-tuning, reaching an AUC of 80.7% and 84.5% for the two skin-lesion datasets evaluated.Comment: 4 page

    Assessing the Generalizability of Deep Neural Networks-Based Models for Black Skin Lesions

    Full text link
    Melanoma is the most severe type of skin cancer due to its ability to cause metastasis. It is more common in black people, often affecting acral regions: palms, soles, and nails. Deep neural networks have shown tremendous potential for improving clinical care and skin cancer diagnosis. Nevertheless, prevailing studies predominantly rely on datasets of white skin tones, neglecting to report diagnostic outcomes for diverse patient skin tones. In this work, we evaluate supervised and self-supervised models in skin lesion images extracted from acral regions commonly observed in black individuals. Also, we carefully curate a dataset containing skin lesions in acral regions and assess the datasets concerning the Fitzpatrick scale to verify performance on black skin. Our results expose the poor generalizability of these models, revealing their favorable performance for lesions on white skin. Neglecting to create diverse datasets, which necessitates the development of specialized models, is unacceptable. Deep neural networks have great potential to improve diagnosis, particularly for populations with limited access to dermatology. However, including black skin lesions is necessary to ensure these populations can access the benefits of inclusive technology.Comment: 18 pages, 3 figures, 7 tables. Accepted at CIARP 202
    • …
    corecore