51 research outputs found

    Delay Differentiation By Balancing Weighted Queue Lengths

    Get PDF
    Scheduling policies adopted for statistical multiplexing should provide delay differentiation between different traffic classes, where each class represents an aggregate traffic of individual applications having same target-queueing-delay requirements. We propose scheduling to optimally balance weighted mean instanteneous queue lengths and later weighted mean cumulative queue lengths as an approach to delay differentiation, where the class weights are set inversely proportional to the respective products of target delays and packet arrival rates. In particular, we assume a discrete-time, two-class, single-server queueing model with unit service time per packet and provide mathematical frame-work throughout our work. For iid Bernoulli packet arrivals, using a step-wise cost-dominance analytical approach using instantaneous queue lengths alone, for a class of one-stage cost functions not necessarily convex, we find the structure of the total-cost optimal policies for a part of the state space. We then consider two particular one-stage cost functions for finding two scheduling policies that are total-cost optimal for the whole state-space. The policy for the absolute weighted difference cost function minimizes the stationary mean, and the policy for the weighted sum-of-square cost function minimizes the stationary second-order moment, of the absolute value of the weighted difference of queue lengths. For the case of weighted sum-of-square cost function, the ‘iid Bernoulli arrivals’ assumption can be relaxed to either ‘iid arrivals with general batch sizes’ or to ‘Markovian zero-one arrivals’ for all of the state space, but for the linear switching curve. We then show that the average cost, starting from any initial state, exists, and is finite for every stationary work-conserving policy for our choices of the one-stage cost-function. This is shown for arbitrary number of class queues and for any i.i.d. batch arrival processes with finite appropriate moments. We then use cumulative queue lengths information in the one-step cost function of the optimization formulation and obtain an optimal myopic policy with 3 stages to go for iid arrivals with general batch sizes. We show analytically that this policy achieves the given target delay ratio in the long run under finite buffer assumption, given that feasibility conditions are satisfied. We take recourse to numerical value iteration to show the existence of average-cost for this policy. Simulations with varied class-weights for Bernoulli arrivals and batch arrivals with Poisson batch sizes show that this policy achieves mean queueing delays closer to the respective target delays than the policy obtained earlier. We also note that the coefficients of variation of the queueing delays of both the classes using cumulative queue lengths are of the same order as those using instantaneous queue lengths. Moreover, the short-term behaviour of the optimal myopic policy using cumulative queue lengths is superior to the existing standard policy reported by Coffman and Mitrani by a factor in the range of 3 to 8. Though our policy performs marginally poorer compared to the value-iterated, sampled, and then stationarily employed policy, the later lacks any closed-form structure. We then modify the definition of the third state variable and look to directly balance weighted mean delays. We come up with another optimal myopic policy with 3 stages to go, following which the error in the ratio of mean delays decreases as the window-size, as opposed to the policy mentioned in the last paragraph, wherein the error decreases as the square-root of the window-size. We perform numerical value-iteration to show the existence of average-cost and study the performance by simulation. Performance of our policy is comparable with the value-iterated, sampled, and then stationarily employed policy, reported by Mallesh. We have then studied general inter-arrival time processes and obtained the optimal myopic policy for the Pareto inter-arrival process, in particular. We have supported with simulation that our policy fares similarly to the PAD policy, reported by Dovrolis et. al., which is primarily heuristic in nature. We then model the possible packet errors in the multiplexed channel by either a Bernoulli process, or a Markov modulated Bernoulli process with two possible channel states. We also consider two possible round-trip-time values for control information, namely zero and one-slot. The policies that are next-stage optimal (for zero round-trip-time), and two-stage optimal (for one-slot round-trip-time) are obtained. Simulations with varied class-weights for Bernoulli arrivals and batch arrivals with Poisson batch sizes show that these policies indeed achieve mean queueing delays very close to the respective target delays. We also obtain the structure for optimal policies with N = 2 + ⌈rtt⌉ stages-to-go for generic values of rtt, and which need not be multiple of time-slots

    Heuristics Based Test Overhead Reduction Techniques in VLSI Circuits

    Get PDF
    The electronic industry has evolved at a mindboggling pace over the last five decades. Moore’s Law [1] has enabled the chip makers to push the limits of the physics to shrink the feature sizes on Silicon (Si) wafers over the years. A constant push for power-performance-area (PPA) optimization has driven the higher transistor density trends. The defect density in advanced process nodes has posed a challenge in achieving sustainable yield. Maintaining a low Defect-per-Million (DPM) target for a product to be viable with stringent Time-to-Market (TTM) has become one of the most important aspects of the chip manufacturing process. Design-for-Test (DFT) plays an instrumental role in enabling low DPM. DFT however impacts the PPA of a chip. This research describes an approach of minimizing the scan test overhead in a chip based on circuit topology heuristics. These heuristics are applied on a full-scan design to convert a subset of the scan flip-flops (SFF) into D flip-flops (DFF). The K Longest Path per Gate (KLPG) [2] automatic test pattern generation (ATPG) algorithm is used to generate tests for robust paths in the circuit. Observability driven multi cycle path generation [3][4] and test are used in this work to minimize coverage loss caused by the SFF conversion process. The presence of memory arrays in a design exacerbates the coverage loss due to the shadow cast by the array on its neighboring logic. A specialized behavioral modeling for the memory array is required to enable test coverage of the shadow logic. This work develops a memory model integrated into the ATPG engine for this purpose. Multiple clock domains pose challenges in the path generation process. The inter-domain clocking relationship and corresponding logic sensitization are modeled in our work to generate synchronous inter-domain paths over multiple clock cycles. Results are demonstrated on ISCAS89 and ITC99 benchmark circuits. Power saving benefit is quantified using an open-source standard-cell library

    Observability Driven Path Generation for Delay Test

    Get PDF
    This research describes an approach for path generation using an observability metric for delay test. K Longest Path Per Gate (KLPG) tests are generated for sequential circuits. A transition launched from a scan flip-flop (SFF) is captured into another SFF during at-speed clock cycles, that is, clock cycles at the rated design speed. The generated path is a ‘longest path’ suitable for delay test. The path generation algorithm then utilizes observability of the fan-out gates in the consecutive, lower-speed clock cycles, known as coda cycles, to generate paths ending at a SFF, to capture the transition from the at-speed cycles. For a given clocking scheme defined by the number of coda cycles, if the final flip-flop is not scan-enabled, the path generation algorithm attempts to generate a different path that ends at a SFF, located in a different branch of the circuit fan-out, indicated by lower observability. The paths generated over multiple cycles are sequentially justified using Boolean satisfiability. The observability metric optimizes the path generation in the coda cycles by always attempting to grow the path through the branch with the best observability and never generating a path that ends at a non-scan flip-flop. The algorithm has been developed in C++. The experiments have been performed on an Intel Core i7 machine with 64GB RAM. Various ISCAS benchmark circuits have been used with various KLPG configurations for code evaluation. Multiple configurations have been used for the experiments. The combinations of the values of K [1, 2, 3, 4, 5] and number of coda cycles [1, 2, 3] have been used to characterize the implementation. A sublinear rise is run time has been observed with increasing K values. The total number of tested paths rise with K and falls with number of coda cycles, due to the increasing number of constraints on the path, particularly due to the fixed inputs

    Behaviour of a High Frequency Parallel Quasi Resonant Inverter Fitted Induction Heater with Different Switching Frequencies

    Get PDF
    This paper investigates the behavior of a high frequency parallel quasiresonantinverter fitted domestic induction heater with different switching frequencies. The power semiconductor switch Insulated Gate Bipolar Junction Transistor (IGBT) is incorporated in this high frequency inverter that can operate under ZVS and ZCS conditions during the switching operations at certain switching frequency to reduce switching losses. The proposed induction heating system responds to three different switching frequencies with providing different results. An Insulated Gate Bipolar Junction Transistor (IGBT) provides better efficiency and faster switching operations. After the complete study of the proposed induction heating system at the selected switching frequencies, the results are compared and it is decided that most reliable, efficient and effective operations from the proposed induction heater can be obtained if the switching frequency is selected slightly above the resonant frequency of the tank circuit of the resonant inverter. The proposed scheme is analyzed using Power SystemSimulator (PSIM) environment

    Designing Tweakable Enciphering Schemes Using Public Permutations

    Get PDF
    A tweakable enciphering scheme (TES) is a length preserving (tweakable) encryption scheme that provides (tweakable) strong pseudorandom permutation security on arbitrarily long messages. TES is traditionally built using block ciphers and the security of the mode depends on the strong pseudorandom permutation security of the underlying block cipher. In this paper, we construct TESs using public random permutations. Public random permutations are being considered as a replacement of block cipher in several cryptographic schemes including AEs, MACs, etc. However, to our knowledge, a systematic study of constructing TES using public random permutations is missing. In this paper, we give a generic construction of a TES which uses a public random permutation, a length expanding public permutation based PRF and a hash function which is both almost xor universal and almost regular. Further, we propose a concrete length expanding public permutation based PRF construction. We also propose a single keyed TES using a public random permutation and an AXU and almost regular hash function

    Hairy root culture: a potent method for improved secondary metabolite production of Solanaceous plants

    Get PDF
    Secondary metabolites synthesized by the Solanaceous plants are of major therapeutic and pharmaceutical importance, many of which are commonly obtained from the roots of these plants. ‘Hairy roots’, mirroring the same phytochemical pattern of the corresponding root of the parent plant with higher growth rate and productivity, are therefore extensively studied as an effective alternative for the in vitro production of these metabolites. Hairy roots are the transformed roots, generated from the infection site of the wounded plants with Agrobacterium rhizogenes. With their fast growth, being free from pathogen and herbicide contamination, genetic stability, and autotrophic nature for plant hormones, hairy roots are considered as useful bioproduction systems for specialized metabolites. Lately, several elicitation methods have been employed to enhance the accumulation of these compounds in the hairy root cultures for both small and large-scale production. Nevertheless, in the latter case, the cultivation of hairy roots in bioreactors should still be optimized. Hairy roots can also be utilized for metabolic engineering of the regulatory genes in the metabolic pathways leading to enhanced production of metabolites. The present study summarizes the updated and modern biotechnological aspects for enhanced production of secondary metabolites in the hairy root cultures of the plants of Solanaceae and their respective importance

    The Committing Security of MACs with Applications to Generic Composition

    Get PDF
    Message Authentication Codes (MACs) are ubiquitous primitives deployed in multiple flavors through standards such as HMAC, CMAC, GMAC, LightMAC, and many others. Its versatility makes it an essential building block in applications necessitating message authentication and integrity checks, in authentication protocols, authenticated encryption schemes, or as a pseudorandom or key derivation function. Its usage in this variety of settings makes it susceptible to a broad range of attack scenarios. The latest attack trends leverage a lack of commitment or context-discovery security in AEAD schemes and these attacks are mainly due to the weakness in the underlying MAC part. However, these new attack models have been scarcely analyzed for MACs themselves. This paper provides a thorough treatment of MACs committing and context-discovery security. We reveal that commitment and context-discovery security of MACs have their own interest by highlighting real-world vulnerable scenarios. We formalize the required security notions for MACs, and analyze the security of standardized MACs for these notions. Additionally, as a constructive application, we analyze generic AEAD composition and provide simple and efficient ways to build committing and context-discovery secure AEADs

    Cadmium(II) compounds of the bis-cyanoethyl derivative (LCX) of Me8[14]aneC (LC): characterization and antibacterial studies

    Get PDF
    The isomeric ligand LC, a saturated analogue of 2,9-C-meso-Me8[14]diene, on reflux with excess acrylonitrile afforded 1,8-N-pendant cyanoethyl derivative LCX. Interaction of LCX with cadmium(II) perchlorate, nitrate, acetate, and chloride salts produced six coordinated octahedral compounds, [Cd(LCX) (ClO4)2]∙2H2O, [Cd(LCX) (NO3)2], [Cd(LCX) (CH3COO)2], and [Cd(LCX)Cl2], respectively. Further, axial substitution reactions between [Cd(LCX) (ClO4)2]∙2H2O and KI, KBr, KCl, KSCN, and NaNO2 in a 1:2 ratio yielded six coordinated octahedral compounds, [Cd(LCX)I2]∙H2O, [Cd(LCX)Br2]∙2H2O, [Cd(LCX)Cl(ClO4)]∙2H2O, [Cd(LCX) (NCS)2]∙H2O, and [Cd(LCX) (NO2) (ClO4)]∙2H2O, respectively. All of the newly prepared compounds have been characterized by analytical, spectroscopic, molar conductivity, and magnetochemical data. The crystal structure of the ligand LCX was determined by x-ray crystallography which showed the 14-membered ring to adopt an extended chair conformation. Antibacterial activities of the newly formed cadmium(II) complexes against selected bacteria showed these to exhibit moderate and selective activity with 1-4 and 8 exhibiting greatest potency against the gram negative bacterium Salmonella typhi, and 5, 6, and 7 against the gram positive bacterium Bacillus wiedmannii

    Targeting Mitochondrial Cell Death Pathway to Overcome Drug Resistance with a Newly Developed Iron Chelate

    Get PDF
    Background: Multi drug resistance (MDR) or cross-resistance to multiple classes of chemotherapeutic agents is a major obstacle to successful application of chemotherapy and a basic problem in cancer biology. The multidrug resistance gene, MDR1, and its gene product P-glycoprotein (P-gp) are an important determinant of MDR. Therefore, there is an urgent need for development of novel compounds that are not substrates of P-glycoprotein and are effective against drug-resistant cancer. Methodology/Principal Findings: In this present study, we have synthesized a novel, redox active Fe (II) complex (chelate), iron N- (2-hydroxy acetophenone) glycinate (FeNG). The structure of the complex has been determined by spectroscopic means. To evaluate the cytotoxic effect of FeNG we used doxorubicin resistant and/or sensitive T lymphoblastic leukemia cells and show that FeNG kills both the cell types irrespective of their MDR phenotype. Moreover, FeNG induces apoptosis in doxorubicin resistance T lymphoblastic leukemia cell through mitochondrial pathway via generation reactive oxygen species (ROS). This is substantiated by the fact that the antioxidant N-acetyle-cysteine (NAC) could completely block ROS generation and, subsequently, abrogated FeNG induced apoptosis. Therefore, FeNG induces the doxorubicin resistant T lymphoblastic leukemia cells to undergo apoptosis and thus overcome MDR. Conclusion/Significance: Our study provides evidence that FeNG, a redox active metal chelate may be a promising ne
    corecore