92 research outputs found

    No Childhood Advantage in the Acquisition of Skill in Using an Artificial Language Rule

    Get PDF
    A leading notion is that language skill acquisition declines between childhood and adulthood. While several lines of evidence indicate that declarative (“what”, explicit) memory undergoes maturation, it is commonly assumed that procedural (“how-to”, implicit) memory, in children, is well established. The language superiority of children has been ascribed to the childhood reliance on implicit learning. Here we show that when 8-year-olds, 12-year-olds and young adults were provided with an equivalent multi-session training experience in producing and judging an artificial morphological rule (AMR), adults were superior to children of both age groups and the 8-year-olds were the poorest learners in all task parameters including in those that were clearly implicit. The AMR consisted of phonological transformations of verbs expressing a semantic distinction: whether the preceding noun was animate or inanimate. No explicit instruction of the AMR was provided. The 8-year-olds, unlike most adults and 12-year-olds, failed to explicitly uncover the semantic aspect of the AMR and subsequently to generalize it accurately to novel items. However, all participants learned to apply the AMR to repeated items and to generalize its phonological patterns to novel items, attaining accurate and fluent production, and exhibiting key characteristics of procedural memory. Nevertheless, adults showed a clear advantage in learning implicit task aspects, and in their long-term retention. Thus, our findings support the notion of age-dependent maturation in the establishment of declarative but also of procedural memory in a complex language task. In line with recent reports of no childhood advantage in non-linguistic skill learning, we propose that under some learning conditions adults can effectively express their language skill acquisition potential. Altogether, the maturational effects in the acquisition of an implicit AMR do not support a simple notion of a language skill learning advantage in children

    Procedural Memory Consolidation in Attention-Deficit/Hyperactivity Disorder Is Promoted by Scheduling of Practice to Evening Hours

    Get PDF
    In young adults without attention-deficit/hyperactivity disorder (ADHD) training on a novel movement sequence results not only in large within-session (online) gains in task performance but also in additional (delayed, off-line) gains in the performance, expressed after an interval of sleep. In contrast, young people with ADHD, given an identical practice, were shown to improve online but expressed much smaller delayed gains overnight. As delayed gains in performance are taken to reflect procedural (“how to”) memory consolidation processes, this may explain skill learning deficits in persons with ADHD. However, motor training is usually provided in morning sessions, and, given that persons with ADHD are often evening types, chronobiological constraints may constitute a hidden factor. Here, we tested the hypothesis that evening training, compared to morning training, would result in larger overnight consolidation gains following practice on a novel motor task in young women with ADHD. Participants with (N = 25) and without (N = 24) ADHD were given training on a finger opposition sequence tapping task, either in the morning or at evening. Performance was assessed before and immediately after training, overnight, and at 2 weeks post-training. Individuals with ADHD reported a general preference for evening hours. Evening training was equally effective in participants with and without ADHD, both groups showing robust consolidation gains in task performance overnight. However, the ability to express delayed gains overnight was significantly reduced in participants with ADHD if trained in the morning. Typical peers were as effective in expressing overnight consolidation phase gains irrespective of the time-of-day wherein the training session was afforded. Nevertheless, even after morning training, participants with ADHD fully retained the gains acquired within the first 24 h over an interval of about 2 weeks. Our results suggest that procedural memory consolidation processes are extant and effective in ADHD, but require that specific biobehavioral conditions be met. The affordance of training in the evening hours can relax some of the constraints on these processes in ADHD. The current results are in line with the notion that the control of what is to be retained in procedural memory is atypical or more stringent in ADHD

    Sequence Specific Motor Performance Gains after Memory Consolidation in Children and Adolescents

    Get PDF
    Memory consolidation for a trained sequence of finger opposition movements, in 9- and 12-year-old children, was recently found to be significantly less susceptible to interference by a subsequent training experience, compared to that of 17-year-olds. It was suggested that, in children, the experience of training on any sequence of finger movements may affect the performance of the sequence elements, component movements, rather than the sequence as a unit; the latter has been implicated in the learning of the task by adults. This hypothesis implied a possible childhood advantage in the ability to transfer the gains from a trained to the reversed, untrained, sequence of movements. Here we report the results of transfer tests undertaken to test this proposal in 9-, 12-, and 17-year-olds after training in the finger-to-thumb opposition sequence (FOS) learning task. Our results show that the performance gains in the trained sequence partially transferred from the left, trained hand, to the untrained hand at 48-hours after a single training session in the three age-groups tested. However, there was very little transfer of the gains from the trained to the untrained, reversed, sequence performed by either hand. The results indicate sequence specific post-training gains in FOS performance, as opposed to a general improvement in performance of the individual, component, movements that comprised both the trained and untrained sequences. These results do not support the proposal that the reduced susceptibility to interference, in children before adolescence, reflects a difference in movement syntax representation after training

    Reduced Susceptibility to Interference in the Consolidation of Motor Memory before Adolescence

    Get PDF
    Are children superior to adults in consolidating procedural memory? This notion has been tied to “critical,” early life periods of increased brain plasticity. Here, using a motor sequence learning task, we show, in experiment 1, that a) the rate of learning during a training session, b) the gains accrued, without additional practice, within a 24 hours post-training interval (delayed consolidation gains), and c) the long-term retention of these gains, were as effective in 9, 12 and 17-year-olds and comparable to those reported for adults. However, a follow-up experiment showed that the establishment of a memory trace for the trained sequence of movements was significantly more susceptible to interference by a subsequent motor learning experience (practicing a reversed movement sequence) in the 17-year-olds compared to the 9 and 12-year-olds. Unlike the 17-year-olds, the younger age-groups showed significant delayed gains even after interference training. Altogether, our results indicate the existence of an effective consolidation phase in motor learning both before and after adolescence, with no childhood advantage in the learning or retention of a motor skill. However, the ability to co-consolidate different, successive motor experiences, demonstrated in both the 9 and 12-year-olds, diminishes after puberty, suggesting that a more selective memory consolidation process takes over from the childhood one. Only the adult consolidation process is gated by a recency effect, and in situations of multiple, clashing, experiences occurring within a short time-interval, adults may less effectively establish in memory experiences superseded by newer ones

    Differences in learning volitional (manual) and non-volitional (posture) aspects of a complex motor skill in young adult dyslexic and skilled readers.

    Get PDF
    The 'Cerebellar Deficit Theory' of developmental dyslexia proposes that a subtle developmental cerebellar dysfunction leads to deficits in attaining 'automatic' procedures and therefore manifests as subtle motor impairments (e.g., balance control, motor skill learning) in addition to the reading and phonological difficulties. A more recent version of the theory suggests a core deficit in motor skill acquisition. This study was undertaken to compare the time-course and the nature of practice-related changes in volitional (manual) and non-volitional (posture) motor performance in dyslexic and typical readers while learning a new movement sequence. Seventeen dyslexic and 26 skilled young adult readers underwent a three-session training program in which they practiced a novel sequence of manual movements while standing in a quiet stance position. Both groups exhibited robust and well-retained gains in speed, with no loss of accuracy, on the volitional, manual, aspects of the task, with a time-course characteristic of procedural learning. However, the dyslexic readers exhibited a pervasive slowness in the initiation of volitional performance. In addition, while typical readers showed clear and well-retained task-related adaptation of the balance and posture control system, the dyslexic readers had significantly larger sway and variance of sway throughout the three sessions and were less efficient in adapting the posture control system to support the acquisition of the novel movement sequence. These results support the notion of a non-language-related deficit in developmental dyslexia, one related to the recruitment of motor systems for effective task performance rather than to a general motor learning disability

    When and Where in Skill Memory Consolidation: Neuro-Behavioral Constraints on the Acquisition and Generation of Procedural Knowledge

    No full text
    Compelling behavioral and neuro-imaging data suggest that the retention and perfection of skills (procedural, “how to” knowledge) reflects long-lasting experience-driven changes in the brain’s organization (neural plasticity). Two corollaries require consideration in designing effective skill learning programs. i) Neuro-behavioral constraints, imposed on whether neuronal plasticity is triggered and allowed to proceed, must be satisfied; otherwise, the skill may fail to consolidate into long-term memory. These include the amount of task iterations afforded, task scheduling, behavioral relevancy and the degree of consistency of the to-be-learned experience over a required timewindow. ii) The performance of a given task reflects qualitatively different task solution routines in different phases of experience. Practice, given time and sometimes time-in-sleep, can trigger processes whereby new procedural knowledge and qualitative changes in task solution, emerge and consolidate. These emerging changes in procedural knowledge result in differences in the ability to transfer gains, across stimulus, context and task parameters

    Fact retrieval and memory consolidation for a movement sequence: bidirectional effects of 'unrelated' cognitive tasks on procedural memory.

    Get PDF
    The generation of long-term memory for motor skills can be modulated by subsequent motor experiences that interfere with the consolidation process. Recent studies suggest that even a non-motor task may adversely affect some aspects of motor sequence memory. Here we show that motor sequence memory can be either enhanced or reduced, by different cognitive tasks. Participants were trained in performing finger movement sequences. Fully explicit instructions about the target sequence were given before practice. The buildup of procedural knowledge was tested at three time-points: immediately before training (T1), after practice (T2), and 24 hours later (T3). Each participant performed the task on two separate occasions; training on a different movement sequence on each occasion. In one condition, interference, participants performed a non-motor task immediately after T2. Half the participants solved simple math problems and half performed a simple semantic judgment task. In the baseline condition there was no additional task. All participants improved significantly between T1 and T2 (within-session gains). In addition, in the baseline condition, performance significantly improved between T2 and T3 (delayed 'off-line' gains). Solving math problems significantly enhanced these delayed gains in motor performance, whereas performing semantic decisions significantly reduced delayed gains compared to baseline. Thus, procedural motor memory consolidation can be either enhanced or inhibited by subsequent cognitive experiences. These effects do not require explicit or implicit new learning. The retrieval of unrelated, non-motor, well established knowledge can modulate procedural memory

    Sequence-specific delayed gains in motor fluency evolve after movement observation training in the absence of early sleep

    No full text
    Abstract Following physical practice, delayed, consolidation-phase, gains in the performance of the trained finger-to-thumb opposition sequence (FOS) can be expressed, in young adults, only after a sleep interval is afforded. These delayed gains are order-of-movements specific. However, in several perceptual learning tasks, time post-learning, rather than an interval of sleep, may suffice for the expression of delayed performance gains. Here we tested whether the affordance of a sleep interval is necessary for the expression of delayed performance gains after FOS training by repeated observation. Participants were trained by observing videos displaying a left hand repeatedly performing a 5-element FOS. To assess post-session observation-related learning and delayed gains participants were tested in performing the observed (trained) and an unobserved (new, the 5-elements mirror-reversed) FOS sequences. Repeated observation of a FOS conferred no advantage to its performance, compared to the unobserved FOS, immediately after practice. However, a clear advantage for the observed FOS emerged by 12 h post-training, irrespective of whether this interval included sleep or not; the largest gains appeared by 24 h post-training. These results indicate that time-dependent, offline consolidation processes take place after observation training even in the absence of sleep; akin to perceptual learning rather than physical FOS practice

    ProcessGene Query – a Tool for Querying the Content Layer of Business Process Models

    No full text
    Abstract. One of the main challenges currently facing the world of enterprise information technology in general and ERP/SCM/CRM systems in particular, is visibility into the business of organizations. While the phenomena of devising supporting tools for process execution frameworks is widespread in academia and practice, there have been few attempts to develop methodologies and software tools that support structured analysis of the business process content layer. The incorporation of content into a business process model produces complexity in the sense that it adds semantics and relationships of actual business data. To confront this complexity, this research suggests a framework and a supporting software tool “ProcessGene Query ” for conducting search-queries on business process models.
    corecore