267 research outputs found
Effects of Recombinant Human Interleukin 7 on T-Cell Recovery and Thymic Output in HIV-Infected Patients Receiving Antiretroviral Therapy: Results of a Phase I/IIa Randomized, Placebo-Controlled, Multicenter Study
Interleukin 7 induces a well-tolerated, dose-dependent, and sustained increase of CD4 T cells in human immunodeficiency virus-infected individuals treated with antiretroviral therapy, through an expansion of peripheral T cells that do not express activation markers, and increases thymic output in some patients
Missed opportunities of inclusion in a cohort of HIV-infected children to initiate antiretroviral treatment before the age of two in West Africa, 2011 to 2013
CITATION: Dahourou, D. L. et al. 2016. Missed opportunities of inclusion in a cohort of HIV-infected children to initiate antiretroviral treatment before the age of two in West Africa, 2011 to 2013. Journal of the International AIDS Society, 19:20601, doi:10.7448/IAS.19.1.20601.The original publication is available at http://www.jiasociety.orgIntroduction: The World Health Organization (WHO) 2010 guidelines recommended to treat all HIV-infected children less than two years of age. We described the inclusion process and its correlates of HIV-infected children initiated on early antiretroviral therapy (EART) at less than two years of age in Abidjan, Côte d’Ivoire, and Ouagadougou, Burkina Faso.
Methods: All children with HIV-1 infection confirmed with a DNA PCR test of a blood sample, aged less than two years, living at a distance less than two hours from the centres and whose parents (or mother if she was the only legal guardian or the legal caregiver if parents were not alive) agreed to participate in the MONOD ANRS 12206 project were included in a cohort to receive EART based on lopinavir/r. We used logistic regression to identify correlates of inclusion.
Results: Among the 217 children screened and referred to the MONOD centres, 161 (74%) were included and initiated on EART. The main reasons of non-inclusion were fear of father’s refusal (48%), mortality (24%), false-positive HIV infection test (16%) and other ineligibility reasons (12%). Having previously disclosed the child’s and mother’s HIV status to the father (adjusted odds ratio (aOR): 3.20; 95% confidence interval (95% CI): 1.55 to 6.69) and being older than 12 months (aOR: 2.05; 95% CI: 1.02 to 4.12) were correlates of EART initiation. At EART initiation, the median age was 13.5 months, 70% had reached WHO Stage 3/4 and 57% had a severe immune deficiency.
Conclusions: Fear of stigmatization by the father and early competing mortality were the major reasons for missed opportunities of EART initiation. There is an urgent need to involve fathers in the care of their HIV-exposed children and to promote early infant diagnosis to improve their future access to EART and survival.http://www.jiasociety.org/index.php/jias/article/view/20601Publisher's versio
Competitive Reporter Monitored Amplification (CMA) - Quantification of Molecular Targets by Real Time Monitoring of Competitive Reporter Hybridization
Background: State of the art molecular diagnostic tests are based on the sensitive detection and quantification of nucleic acids. However, currently established diagnostic tests are characterized by elaborate and expensive technical solutions hindering the development of simple, affordable and compact point-of-care molecular tests. Methodology and Principal Findings: The described competitive reporter monitored amplification allows the simultaneous amplification and quantification of multiple nucleic acid targets by polymerase chain reaction. Target quantification is accomplished by real-time detection of amplified nucleic acids utilizing a capture probe array and specific reporter probes. The reporter probes are fluorescently labeled oligonucleotides that are complementary to the respective capture probes on the array and to the respective sites of the target nucleic acids in solution. Capture probes and amplified target compete for reporter probes. Increasing amplicon concentration leads to decreased fluorescence signal at the respective capture probe position on the array which is measured after each cycle of amplification. In order to observe reporter probe hybridization in real-time without any additional washing steps, we have developed a mechanical fluorescence background displacement technique. Conclusions and Significance: The system presented in this paper enables simultaneous detection and quantification of multiple targets. Moreover, the presented fluorescence background displacement technique provides a generic solution fo
Perinatal acquisition of drug-resistant HIV-1 infection: mechanisms and long-term outcome
<p>Abstract</p> <p>Background</p> <p>Primary-HIV-1-infection in newborns that occurs under antiretroviral prophylaxis that is a high risk of drug-resistance acquisition. We examine the frequency and the mechanisms of resistance acquisition at the time of infection in newborns.</p> <p>Patients and Methods</p> <p>We studied HIV-1-infected infants born between 01 January 1997 and 31 December 2004 and enrolled in the ANRS-EPF cohort. HIV-1-RNA and HIV-1-DNA samples obtained perinatally from the newborn and mother were subjected to population-based and clonal analyses of drug resistance. If positive, serial samples were obtained from the child for resistance testing.</p> <p>Results</p> <p>Ninety-two HIV-1-infected infants were born during the study period. Samples were obtained from 32 mother-child pairs and from another 28 newborns. Drug resistance was detected in 12 newborns (20%): drug resistance to nucleoside reverse transcriptase inhibitors was seen in 10 cases, non-nucleoside reverse transcriptase inhibitors in two cases, and protease inhibitors in one case. For 9 children, the detection of the same resistance mutations in mothers' samples (6 among 10 available) and in newborn lymphocytes (6/8) suggests that the newborn was initially infected by a drug-resistant strain. Resistance variants were either transmitted from mother-to-child or selected during subsequent temporal exposure under suboptimal perinatal prophylaxis. Follow-up studies of the infants showed that the resistance pattern remained stable over time, regardless of antiretroviral therapy, suggesting the early cellular archiving of resistant viruses. The absence of resistance in the mother of the other three children (3/10) and neonatal lymphocytes (2/8) suggests that the newborns were infected by a wild-type strain without long-term persistence of resistance when suboptimal prophylaxis was stopped.</p> <p>Conclusion</p> <p>This study confirms the importance of early resistance genotyping of HIV-1-infected newborns. In most cases (75%), drug resistance was archived in the cellular reservoir and persisted during infancy, with or without antiretroviral treatment. This finding stresses the need for effective antiretroviral treatment of pregnant women.</p
Tetherin Restricts Productive HIV-1 Cell-to-Cell Transmission
The IFN-inducible antiviral protein tetherin (or BST-2/CD317/HM1.24) impairs release of mature HIV-1 particles from infected cells. HIV-1 Vpu antagonizes the effect of tetherin. The fate of virions trapped at the cell surface remains poorly understood. Here, we asked whether tetherin impairs HIV cell-to-cell transmission, a major means of viral spread. Tetherin-positive or -negative cells, infected with wild-type or ΔVpu HIV, were used as donor cells and cocultivated with target lymphocytes. We show that tetherin inhibits productive cell-to-cell transmission of ΔVpu to targets and impairs that of WT HIV. Tetherin accumulates with Gag at the contact zone between infected and target cells, but does not prevent the formation of virological synapses. In the presence of tetherin, viruses are then mostly transferred to targets as abnormally large patches. These viral aggregates do not efficiently promote infection after transfer, because they accumulate at the surface of target cells and are impaired in their fusion capacities. Tetherin, by imprinting virions in donor cells, is the first example of a surface restriction factor limiting viral cell-to-cell spread
Relationship between Regulatory T Cells and Immune Activation in Human Immunodeficiency Virus-Infected Patients Interrupting Antiretroviral Therapy
Persistent immune activation plays a central role in driving Human Immunodeficiency Virus (HIV) disease progression. Whether CD4+CD25+ regulatory T cells (Tregs) are harmful by suppressing HIV-specific immune responses and/or beneficial through a decrease in immune activation remains debatable. We analysed the relationship between proportion and number of regulatory T cells (Tregs) and immune activation in HIV-infected patients interrupting an effective antiretroviral therapy (ART). Twenty-five patients were included in a substudy of a prospective multicenter trial of treatment interruption (TI) (ANRS 116). Proportions and numbers of Tregs and the proportion of activated CD4 and CD8 T cells were assessed at baseline and month 12 (M12) of TI. Specific anti-HIV CD4 and CD8 responses were investigated at baseline and M12. Non parametric univariate analyses and multivariate linear regression models were conducted. At baseline, the proportion of Tregs negatively correlated with the proportion of HLA-DR+CD8+T cells (r = −0.519). Following TI, the proportion of Tregs increased from 6.3% to 7.2% (p = 0.029); absolute numbers of Tregs decreased. The increase in the proportion of HLA-DR+CD38+CD8+T cells was significantly related to the increase in proportion of Tregs (p = 0.031). At M12, the proportion of Tregs did not negatively correlate with CD8 T-cell activation. Nevertheless, Tregs retain a suppressive function since depletion of Treg-containing CD4+CD25+ cells led to an increase in lymphoproliferative responses in most patients studied. Our data suggest that Tregs are efficient in controlling residual immune activation in patients with ART-mediated viral suppression. However, the insufficient increase in the proportion and/or the decrease in the absolute number of Tregs result in a failure to control immune activation following TI
Dominant-negative mutations in human IL6ST underlie hyper-IgE syndrome
Autosomal dominant hyper-IgE syndrome (AD-HIES) is typically caused by dominant-negative (DN) STAT3 mutations. Patients suffer from cold staphylococcal lesions and mucocutaneous candidiasis, severe allergy, and skeletal abnormalities. We report 12 patients from 8 unrelated kindreds with AD-HIES due to DN IL6ST mutations. We identified seven different truncating mutations, one of which was recurrent. The mutant alleles encode GP130 receptors bearing the transmembrane domain but lacking both the recycling motif and all four STAT3-recruiting tyrosine residues. Upon overexpression, the mutant proteins accumulate at the cell surface and are loss of function and DN for cellular responses to IL-6, IL-11, LIF, and OSM. Moreover, the patients’ heterozygous leukocytes and fibroblasts respond poorly to IL-6 and IL-11. Consistently, patients with STAT3 and IL6ST mutations display infectious and allergic manifestations of IL-6R deficiency, and some of the skeletal abnormalities of IL-11R deficiency. DN STAT3 and IL6ST mutations thus appear to underlie clinical phenocopies through impairment of the IL-6 and IL-11 response pathways
Distinct Genetic Loci Control Plasma HIV-RNA and Cellular HIV-DNA Levels in HIV-1 Infection: The ANRS Genome Wide Association 01 Study
Previous studies of the HIV-1 disease have shown that HLA and Chemokine receptor genetic variants influence disease progression and early viral load. We performed a Genome Wide Association study in a cohort of 605 HIV-1-infected seroconverters for detection of novel genetic factors that influence plasma HIV-RNA and cellular HIV-DNA levels. Most of the SNPs strongly associated with HIV-RNA levels were localised in the 6p21 major histocompatibility complex (MHC) region and were in the vicinity of class I and III genes. Moreover, protective alleles for four disease-associated SNPs in the MHC locus (rs2395029, rs13199524, rs12198173 and rs3093662) were strikingly over-represented among forty-five Long Term HIV controllers. Furthermore, we show that the HIV-DNA levels (reflecting the HIV reservoir) are associated with the same four SNPs, but also with two additional SNPs on chromosome 17 (rs6503919; intergenic region flanked by the DDX40 and YPEL2 genes) and chromosome 8 (rs2575735; within the Syndecan 2 gene). Our data provide evidence that the MHC controls both HIV replication and HIV reservoir. They also indicate that two additional genomic loci may influence the HIV reservoir
- …