26 research outputs found

    Network error correction with unequal link capacities

    Full text link
    This paper studies the capacity of single-source single-sink noiseless networks under adversarial or arbitrary errors on no more than z edges. Unlike prior papers, which assume equal capacities on all links, arbitrary link capacities are considered. Results include new upper bounds, network error correction coding strategies, and examples of network families where our bounds are tight. An example is provided of a network where the capacity is 50% greater than the best rate that can be achieved with linear coding. While coding at the source and sink suffices in networks with equal link capacities, in networks with unequal link capacities, it is shown that intermediate nodes may have to do coding, nonlinear error detection, or error correction in order to achieve the network error correction capacity

    Approximate Capacity of Gaussian Relay Networks

    Get PDF
    We present an achievable rate for general Gaussian relay networks. We show that the achievable rate is within a constant number of bits from the information-theoretic cut-set upper bound on the capacity of these networks. This constant depends on the topology of the network, but not the values of the channel gains. Therefore, we uniformly characterize the capacity of Gaussian relay networks within a constant number of bits, for all channel parameters.Comment: This paper is submited to 2008 IEEE International Symposium on Information Theory (ISIT 2008) -In the revised format the approximation gap (\kappa) is sharpene

    Network Error Correction With Unequal Link Capacities

    Full text link
    corecore