11,905 research outputs found
The effects of electron and proton radiation on GaSb infrared solar cells
Gallium antimonide (GaSb) infrared solar cells were exposed to 1 MeV electrons and protons up to fluences of 1 times 10(exp 15) cm (-2) and 1 times 10(exp 12) cm (-2) respectively. In between exposures, current voltage and spectral response curves were taken. The GaSb cells were found to degrade slightly less than typical GaAs cells under electron irradiation, and calculations from spectral response curves showed that the damage coefficient for the minority carrier diffusion length was 3.5 times 10(exp 8). The cells degraded faster than GaAs cells under proton irradiation. However, researchers expect the top cell and coverglass to protect the GaSb cell from most damaging protons. Some annealing of proton damage was observed at low temperatures (80 to 160 C)
Development of processing procedures for advanced silicon solar cells
Ten ohm-cm silicon solar cells, 0.2 mm thick, were produced with short circuit current efficiencies up to thirteen percent and using a combination of recent technical advances. The cells were fabricated in conventional and wraparound contact configurations. Improvement in cell collection efficiency from both the short and long wavelengths region of the solar spectrum was obtained by coupling a shallow junction and an optically transparent antireflection coating with back surface field technology. Both boron diffusion and aluminum alloying techniques were evaluated for forming back surface field cells. The latter method is less complicated and is compatible with wraparound cell processing
Design and fabrication of wraparound contact silicon solar cells
Both dielectric insulation and etched junction contact techniques were evaluated for use in wraparound contact cell fabrication. Since a suitable process for depositing the dielectrics was not achieved, the latter approach was taken. The relationship between loss of back contact and power degradation due to increased series resistance was established and used to design a simple contact configuration for 10 ohm-cm etched wraparound junction contact N/P cells. A slightly deeper junction significantly improved cell curve shape and the associated loss of current was regained by using thinner contact grid fingers. One thousand cells with efficiencies greater than 10.5% were fabricated to demonstrate the process
Multi-level study of C3H2: The first interstellar hydrocarbon ring
Cyclic species in the interstellar medium have been searched for almost since the first detection of interstellar polyatomic molecules. Eleven different C3H2 rotational transitions were detected; 9 of which were studied in TMC-1, a nearby dark dust cloud, are shown. The 1 sub 10 yields 1 sub 01 and 2 sub 20 yields 2 sub 11 transitions were observed with the 43 m NRAO telescope, while the remaining transitions were detected with the 14 m antenna of the Five College Radio Observatory (FCRAO). The lines detected in TMC-1 have energies above the ground state ranging from 0.9 to 17.1 K and consist of both ortho and para species. Limited maps were made along the ridge for several of the transitions. The HC3N J = 2 yields 1 transition were mapped simultaneously with the C3H2 1 sub 10 yields 1 sub 01 line and therefore can compare the distribution of this ring with a carbon chain in TMC-1. C3H2 is distributed along a narrow ridge with a SE - NW extension which is slightly more extended than the HC2N J = 2 yields 1. Gaussian fits gives a FWHP extension of 8'5 for C3H2 while HC3N has a FWHP of 7'. The data show variations of the two velocity components along the ridge as a function of transition. Most of the transitions show a peak at the position of strongest HC3N emission while the 2 sub 21 yields 2 sub 10 transition shows a peak at the NH3 position
Where are all the gravastars? Limits upon the gravastar model from accreting black holes
The gravastar model, which postulates a strongly correlated thin shell of
anisotropic matter surrounding a region of anti-de Sitter space, has been
proposed as an alternative to black holes. We discuss constraints that
present-day observations of well-known black hole candidates place on this
model. We focus upon two black hole candidates known to have extraordinarily
low luminosities: the supermassive black hole in the Galactic Center,
Sagittarius A*, and the stellar-mass black hole, XTE J1118+480. We find that
the length scale for modifications of the type discussed in Chapline et al.
(2003) must be sub-Planckian.Comment: 11 pages, 4 figure
External tank gaseous oxygen line simulated lightning tests
Tests were made to evaluate the effects of lightning strikes on the shuttle external tank gaseous oxygen pressurization line. This line, designed to conduct gaseous oxygen may also act as a lightning conductor. Questions have been raised as to the potential hazard of this line as a lightning conductor with speculation as to the damage that might occur to the pressurization line, and the adjacent thermal protective surfaces, from a lightning strike. The region of investigation was from above the cone of the launch tower lightning protection to 15.24 km (50, 000 ft) altitude. Tests were performed on samples of thin wall stainless steel tubing filled with gaseous oxygen under simulated flight conditions. No specimen malfunctions occurred when the tests were conducted according to JSC specifications. Based on the JSC specifications and the results of these tests, it is concluded that a lightning strike will not cause a malfunction of the shuttle external tank gaseous oxygen line made of the representative material tested
Closed-circuit television welding- electrode guidance system
Closed-circuit TV camera is mounted parallel to electrode and moves along with it. Camera is scanned along seam so seam is viewed parallel with scan lines on TV monitor. Two fiber optics illuminators are attached to guidance system; they illuminate seam for TV camera
Tandem concentrator solar cells with 30 percent (AMO) power conversion efficiency
Very high efficiency concentrator solar panels are envisioned as economical and reliable electrical power subsystems for space based platforms of the future. GaAs concentrator cells with very high efficiencies and good sub-bandgap transmissions can be fabricated on standard wafers. GaSb booster cell development is progressing very well; performance characteristics are still improving dramatically. Consistent GaAs/GaSb stacked cell AMO efficiencies greater than 30 percent are expected
Advanced photovoltaic power systems using tandem GaAs/GaSb concentrator modules
In 1989, Boeing announced the fabrication of a tandem gallium concentrator solar cell with an energy conversion efficiency of 30 percent. This research breakthrough has now led to panels which are significantly smaller, lighter, more radiation resistant, and potentially less expensive than the traditional silicon flat plate electric power supply. The new Boeing tandem concentrator (BTC) module uses an array of lightweight silicone Fresnel lenses mounted on the front side of a light weight aluminum honeycomb structure to focus sunlight onto small area solar cells mounted on a thin back plane. This module design is shown schematically. The tandem solar cell in this new module consists of a gallium arsenide light sensitive cell with a 24 percent energy conversion efficiency stacked on top of a gallium antimonide infrared sensitive cell with a conversion efficiency of 6 percent. This gives a total efficiency 30 percent for the cell-stack. The lens optical efficiency is typically 85 percent. Discounting for efficiency losses associated with lens packing, cell wiring, and cell operating temperature still allows for a module efficiency of 22 percent which leads to a module power density of 300 Watts/sq. m. This performance provides more than twice the power density available from a single crystal silicon flat plate module and at least four times the power density available from amorphous silicon modules. The fact that the lenses are only 0.010 ft. thick and the aluminum foil back plane is only 0.003 ft. thick leads to a very lightweight module. Although the cells are an easy to handle thickness of 0.020 ft., the fact that they are small, occupying one-twenty-fifth of the module area, means that they add little to the module weight. After summing all the module weights and given the high module power, we find that we are able to fabricate BTC modules with specific power of 100 watts/kg
- …