36 research outputs found

    The recurrent missense mutation p.(Arg367Trp) in YARS1 causes a distinct neurodevelopmental phenotype

    Get PDF
    Abstract: Pathogenic variants in aminoacyl-tRNA synthetases (ARS1) cause a diverse spectrum of autosomal recessive disorders. Tyrosyl tRNA synthetase (TyrRS) is encoded by YARS1 (cytosolic, OMIM*603,623) and is responsible of coupling tyrosine to its specific tRNA. Next to the enzymatic domain, TyrRS has two additional functional domains (N-Terminal TyrRSMini and C-terminal EMAP-II-like domain) which confer cytokine-like functions. Mutations in YARS1 have been associated with autosomal-dominant Charcot-Marie-Tooth (CMT) neuropathy type C and a heterogenous group of autosomal recessive, multisystem diseases. We identified 12 individuals from 6 families with the recurrent homozygous missense variant c.1099C > T;p.(Arg367Trp) (NM_003680.3) in YARS1. This variant causes a multisystem disorder with developmental delay, microcephaly, failure to thrive, short stature, muscular hypotonia, ataxia, brain anomalies, microcytic anemia, hepatomegaly, and hypothyroidism. In silico analyses show that the p.(Arg367Trp) does not affect the catalytic domain responsible of enzymatic coupling, but destabilizes the cytokine-like C-terminal domain. The phenotype associated with p.(Arg367Trp) is distinct from the other biallelic pathogenic variants that reside in different functional domains of TyrRS which all show some common, but also divergent clinical signs [(e.g., p.(Phe269Ser)—retinal anomalies, p.(Pro213Leu)/p.(Gly525Arg)—mild ID, p.(Pro167Thr)—high fatality)]. The diverse clinical spectrum of ARS1-associated disorders is related to mutations affecting the various non-canonical domains of ARS1, and impaired protein translation is likely not the exclusive disease-causing mechanism of YARS1- and ARS1-associated neurodevelopmental disorders. Key messages: The missense variant p.(Arg367Trp) in YARS1 causes a distinct multisystem disorder.p.(Arg367Trp) affects a non-canonical domain with cytokine-like functions.Phenotypic heterogeneity associates with the different affected YARS1 domains.Impaired protein translation is likely not the exclusive mechanism of ARS1-associated disorders

    SLPI - a Biomarker of Acute Kidney Injury after Open and Endovascular Thoracoabdominal Aortic Aneurysm (TAAA) Repair

    No full text
    Acute kidney injury (AKI) is a relevant complication following thoracoabdominal aortic aneurysm repair (TAAA). Biomarkers, such as secretory leucocyte peptidase inhibitor (SLPI), may enable a more accurate diagnosis. In this study, we tested if SLPI measured in serum is an appropriate biomarker of AKI after TAAA repair. In a prospective observational single-center study including 33 patients (51.5% women, mean age 63.0 +/- 16.2 years) undergoing open and endovascular aortic aneurysm repair in 2017, SLPI was measured peri-operatively (until 72 h after surgery). After surgery, the postoperative complications AKI, as defined according to the KDIGO diagnostic criteria, sepsis, death, MACE (major cardiovascular events) and, pneumonia were assessed. In a subgroup analysis, patients with preexisting kidney disease were excluded. Of 33 patients, 51.5% (n = 17) of patients developed AKI. Twelve hours after admission to the intensive care unit (ICU), SLPI serum levels were significantly increased in patients who developed AKI. Multivariable logistic regression revealed a significant association between SLPI 12 hours after admission to ICU and AKI (P = 0.0181, OR = 1.055, 95% CI = 1.009-1.103). The sensitivity of SLPI for AKI prediction was 76.47% (95% CI = 50.1-93.2) and the specificity was 87.5% (95% CI = 61.7-98.4) with an AUC = 0.838 (95% CI = 0.7-0.976) for an optimal cut-off 70.03 ng/ml 12 hours after surgery. In patients without pre-existing impaired renal function, an improved diagnostic quality of SLPI for AKI was observed (Sensitivities of 45.45-91.67%, Specificities of 77.7-100%, AUC = 0.716-0.932). There was no association between perioperative SLPI and the incidence of sepsis, death, MACE (major cardiovascular events), pneumonia. This study suggests that SLPI might be a post-operative biomarker of AKI after TAAA repair, with a superior diagnostic accuracy for patients without preexisting impaired renal function

    The chiral structure of porous chitin within the wing-scales of Callophrys rubi

    No full text
    The structure of the porous three-dimensional reticulated pattern in the wing scales of the butterfly Callophrys rubi (the Green Hairstreak) is explored in detail, via scanning and transmission electron microscopy. A full 3D tomographic reconstruction of a section of this material reveals that the predominantly chitin material is assembled in the wing scale to form a structure whose geometry bears a remarkable correspondence to the srs net, well-known in solid state chemistry and soft materials science. The porous solid is bounded to an excellent approximation by a parallel surface to the Gyroid, a three-periodic minimal surface with cubic crystallographic symmetry I4132, as foreshadowed by Stavenga and Michielson. The scale of the structure is commensurate with the wavelength of visible light, with an edge of the conventional cubic unit cell of the parallel-Gyroid of approximately 310 nm. The genesis of this structure is discussed, and we suggest it affords a remarkable example of templating of a chiral material via soft matter, analogous to the formation of mesoporous silica via surfactant assemblies in solution. In the butterfly, the templating is achieved by the lipid–protein membranes within the smooth endoplasmic reticulum (while it remains in the chrysalis), that likely form cubic membranes, folded according to the form of the Gyroid. The subsequent formation of the chiral hard chitin framework is suggested to be driven by the gradual polymerisation of the chitin precursors, whose inherent chiral assembly in solution (during growth) promotes the formation of a single enantiomer

    The chiral structure of porous chitin within the wing-scales of Callophrys rubi

    No full text
    The structure of the porous three-dimensional reticulated pattern in the wing scales of the butterfly Callophrys rubi (the Green Hairstreak) is explored in detail, via scanning and transmission electron microscopy. A full 3D tomographic reconstruction o
    corecore