35 research outputs found

    Amiloride-sensitive channels in type I fungiform taste cells in mouse

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Taste buds are the sensory organs of taste perception. Three types of taste cells have been described. Type I cells have voltage-gated outward currents, but lack voltage-gated inward currents. These cells have been presumed to play only a support role in the taste bud. Type II cells have voltage-gated Na<sup>+ </sup>and K<sup>+ </sup>current, and the receptors and transduction machinery for bitter, sweet, and umami taste stimuli. Type III cells have voltage-gated Na<sup>+</sup>, K<sup>+</sup>, and Ca<sup>2+ </sup>currents, and make prominent synapses with afferent nerve fibers. Na<sup>+ </sup>salt transduction in part involves amiloride-sensitive epithelial sodium channels (ENaCs). In rodents, these channels are located in taste cells of fungiform papillae on the anterior part of the tongue innervated by the chorda tympani nerve. However, the taste cell type that expresses ENaCs is not known. This study used whole cell recordings of single fungiform taste cells of transgenic mice expressing GFP in Type II taste cells to identify the taste cells responding to amiloride. We also used immunocytochemistry to further define and compare cell types in fungiform and circumvallate taste buds of these mice.</p> <p>Results</p> <p>Taste cell types were identified by their response to depolarizing voltage steps and their presence or absence of GFP fluorescence. TRPM5-GFP taste cells expressed large voltage-gated Na<sup>+ </sup>and K<sup>+ </sup>currents, but lacked voltage-gated Ca<sup>2+ </sup>currents, as expected from previous studies. Approximately half of the unlabeled cells had similar membrane properties, suggesting they comprise a separate population of Type II cells. The other half expressed voltage-gated outward currents only, typical of Type I cells. A single taste cell had voltage-gated Ca<sup>2+ </sup>current characteristic of Type III cells. Responses to amiloride occurred only in cells that lacked voltage-gated inward currents. Immunocytochemistry showed that fungiform taste buds have significantly fewer Type II cells expressing PLC signalling components, and significantly fewer Type III cells than circumvallate taste buds.</p> <p>Conclusion</p> <p>The principal finding is that amiloride-sensitive Na<sup>+ </sup>channels appear to be expressed in cells that lack voltage-gated inward currents, likely the Type I taste cells. These cells were previously assumed to provide only a support function in the taste bud.</p

    Primary processes in sensory cells: current advances

    Get PDF

    Proton currents through amiloride-sensitive Na channels in hamster taste cells. Role in acid transduction

    No full text
    The activity of taste cells maintained in the intact hamster tongue was monitored in response to acid stimulation by recording action currents from taste receptor cells with an extracellular "macro" patch pipette: a glass pipette was pressed over the taste pore of fungiform papillae and perfused with citric acid, hydrochloric acid, or NaCl. Because this technique restricted stimulus application to the small surface area of the apical membranes of the taste cells, many nonspecific, and potentially detrimental, effects of acid stimulation could be avoided. Acid stimulation reliably elicited fast transient currents (action currents of average amplitude, 9 pA) which were consistently smaller than those elicited by NaCl (29 pA). The frequency of action currents elicited by acid stimuli increased in a dose-dependent manner with decreasing pH from a threshold of about pH 5.0. Acid-elicited responses were independent of K+, Na+, Cl-, or Ca2+ at physiological (salivary) concentrations, and were unaffected by anthracene-9-carboxylic acid, tetraethylammonium bromide, diisothiocyanate-stilbene-2,2'-disulfonic acid, vanadate, or Cd2+. In contrast, amiloride (< or = 30 microM) fully and reversibly suppressed acid-evoked action currents. At submaximal amiloride concentrations, the frequency and amplitude of the action currents were reduced, indicating a reduction of the taste cell apical conductance concomitant with a decrease in cell excitation. Exposure to low pH elicited, in addition to transient currents, an amiloride-sensitive sustained d.c. current. This current is apparently carried by protons instead of Na+ through amiloride-sensitive channels. When citric acid was applied while the taste bud was stimulated by NaCl, the action currents became smaller and the response resembled that produced by acid alone. Because of the strong interdependence of the acid and salt (NaCl) responses when both stimuli are applied simultaneously, and because of the similarity in the concentration dependence of amiloride block, we conclude that amiloride-sensitive Na+ channels on hamster taste receptor cells are permeable to protons and may play a role in acid (sour) taste
    corecore