3 research outputs found

    Bradykinin B1 receptor expression induced by tissue damage in the rat portal vein - A critical role for mitogen-activated protein kinase and nuclear factor-kappaB signaling pathways

    No full text
    The bradykinin B1 receptor (B1R) is normally absent under physiological conditions, but is highly inducible during inflammatory conditions or following tissue damage. The present study attempted to determine some of the mechanisms underlying B1R upregulation following tissue injury in rat portal vein. Damage induced by tissue isolation and in vitro incubation caused a significant and time-dependent increase in des-Arg 9-bradykinin (des-Arg9-BK) responsiveness that paralleled the B1R mRNA expression, as confirmed by real-time quantitative PCR. In vitro incubation of rat portal vein also induced the activation of some members of the mitogen activated protein kinase (MAPK) family, namely, extracellular signal-regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK), and p38 MAPK, an effect accompanied by degradation of the inhibitory protein IκB{alpha} and translocation of nuclear transcription factor-κB (NF-κB) to the nucleus. The blockade of p38 MAPK, JNK or NF-κB, but not ERK pathways with selective inhibitors, resulted in a significant reduction of the upregulated contractile response caused by the selective B1R agonist des-Arg9-BK, and largely prevented the induction of B1R mRNA expression in the rat portal vein. Together, these results demonstrate that in vitro tissue damage induces activation of several intracellular signaling pathways that have a key role in the control of B1R expression. B1R could exert a pivotal role in the development of the cardiovascular response associated with vascular damage

    Transcriptional regulation of the rat bradykinin B2 receptor gene: Identification of a silencer element

    No full text
    Kinins are involved in a variety of physiological and pathophysiological processes related to cardiovascular homeostasis, inflammation, blood flow, and nociception. Under physiological conditions, the bradykinin B2 (BKB2) receptor is constitutively expressed and mediates most of kinins' actions. However, the mechanisms regulating BKB2 receptor gene expression are still poorly understood. In this study, 4.6 kilobases of the 5′-flanking region from the rat BKB2 receptor gene were sequenced, and computer analysis revealed several sites for transcriptional factors. Nine promoter mutants were cloned in luciferase reporter gene vectors and transfected in NG108-15 cells and rat aorta vascular smooth muscle cells (VSMCs), showing several positive and negative regulatory elements. A classical silencer with 56 base pairs (bp) caused a decrease in reporter gene activity in NG108-15 cells and VSMCs and was able to inhibit the thymidine kinase promoter. Using electrophoretic mobility shift assay and surface plasmon resonance assay, protein-DNA interactions in the silencer region were determined and specific sets of protein-silencer complexes were detected in both cell types. More intense complexes were observed in the central 21 bp of the silencer and mutation in a putative SRE-1 site strongly impaired the protein-DNA binding. Down-regulation of the BKB2 receptor population in NG108-15 cells promoted by N6, 2′-O-dibutyryladenosine 3′:5′-cyclic monophosphate was paralleled by an increase in the amount of nuclear proteins bound to the silencer sequence showing an inverse relationship between protein-silencer complexes and the transcription of the BKB2 receptor gene. In summary, these data highlight the cell-specific regulation of the BKB2 receptor and the importance of a silencer element present in the regulatory region of the gene
    corecore