3 research outputs found

    An Optimization Platform for High Speed Propellers

    Get PDF
    To improve the efficiency by which current power plants translate jet energy into useful thrust the use of turboprop and in particular open rotor aircraft are being revisited. One challenge in association with developing new powerplants for such aircraft is high speed propeller design in general and noise prediction in particular. The Boxprop was invented in 2009 by GKN Aerospace in order to mitigate the effects of the tip vortex on noise and to improve upon the aerodynamics of a conventional propeller blade. The Boxprop is composed of a double-bladed propeller joined at the tips, and the design has the potential to eliminate the tip vortex, and thereby decrease that particular noise source. The complex and highly three-dimensional shape of an advanced propeller blade is challenging to model with classical propeller design methods, requiring instead more sophisticated optimization methods. This paper presents an optimization platform developed for high speed propellers, and illustrates its use by performing a reduced aerodynamic optimization of the Boxprop. The optimization process starts by performing a Latin Hypercube Sampling of the design space, and analyzes the resulting geometries using CFD. A meta-model employing radial basis functions is then used to interpolate on the obtained CFD results, which the GA uses to find optimal candidates along the obtained Pareto front. These designs are then evaluated using CFD, and their data added to the meta-model. The process iterates until the meta-model converges. The results of this paper demonstrate the capability of the presented optimization platform, and applying it on the Boxprop has resulted in valuable design improvements and insights. The obtained designs show less blade interference, more efficiently loaded blades, and less produced swirl. The methodology for geometry generation, meshing and optimizing is fast, robust, and readily extendable to other types of optimization problems, and paves the way for future collaborative research in the area of turbomachinery

    AN ASSESSMAn assessment of a turbofan engine using catalytic interturbine combustionENT OF A TURBOFAN ENGINE USING CATALYTIC INTERTURBINE COMBUSTION

    No full text
    The potential for using catalytic combustion in aero engines is discussed. Some preliminaries relating to NOx formation and material capabilities are analyzed. Various means to integrate catalytic combustors in aero engines are described. In particular, catalytic interturbine combustion is investigated both in terms of technical feasibility and through a preliminary design exercise. A thermodynamic design point study is presented analyzing a configuration with a combustor located concentrically around the engine core receiving pressurized air through an interstage high pressure compressor bleed. A parameter study of the compressor bleed ratio is presented for the configuration. A substantial reduction in NOx emissions at the expense of an increase in mission fuel consumption is observed

    Analysis and Development of Integrated Low-Pressure Shaft Generator

    No full text
    The work focuses on analysis and development of integrated low-pressure shaft generator in a geared twin-spool turbofan engine. It starts with manufacturing and evaluation of direct cooled hollow conductor coils, and has focus manufacturing, assembling and integration issues essential to machine design. The experiment-in-loop, but the model-based evaluation focuses not only on the coolant and cooling system study and on the characterization of the electric machine, but also when exploring the additional design issues related to electric drive systems for permanent magnet synchronous machines and studying the features of power transfer between the turbo engine spools
    corecore