7 research outputs found
NORMALIZATION OF HEALTH RECORDS IN THE SERBIAN LANGUAGE WITH THE AIM OF SMART HEALTH SERVICES REALIZATION
The development of information technology increases its use in various spheres of human activity, including healthcare. Bundles of data and reports are generated and stored in textual form, such as symptoms, medical history, and doctor’s observations of patients' health. Electronic recording of patient data not only facilitates day-to-day work in hospitals, enables more efficient data management and reduces material costs, but can also be used for further processing and to gain knowledge to improve public health. Publicly available health data would contribute to the development of telemedicine, e-health, epidemic control, and smart healthcare within smart cities. This paper describes the importance of textual data normalization for smart healthcare services. An algorithm for normalizing medical data in Serbian is proposed in order to prepare them for further processing (F1-score=0,816), in this case within the smart health framework. By applying this algorithm, in addition to the normalized medical records, corpora of keywords and stop words, which are specific to the medical domain, are also obtained and can be used to improve the results in the normalization of medical textual data.
Challenging modeling strategies for LES of non-adiabatic turbulent stratified combustion
Five different low-Mach large eddy simulations are compared to the turbulent stratified flame experiments conducted at the Technical University of Darmstadt (TUD). The simulations were contributed by TUD, the Institute for Combustion Technology (ITV) at Aachen, Lund University (LUND), the EM2C laboratory at Ecole Centrale Paris, and the University of Duisburg-Essen (UDE). Combustion is modeled by a premixed flamelet tabulation with local flame thickening (TUD), a premixed flamelet progress variable approach coupled to a level set method (ITV), a 4-steps mechanism combined with implicit LES (LUND), the F-TACLES model that is based on filtered premixed flamelet tabulation (EM2C), and a flame surface density approach (UDE). An extensive comparison of simulation and experimental data is presented for the first two moments of velocity, temperature, mixture fraction, and major species mass fractions. The importance of heat-losses was assessed by comparing simulations for adiabatic and isothermal boundary conditions at the burner walls. The adiabatic computations predict a flame anchored on the burner lip, while the non-adiabatic simulations show a flame lift-off of one half pilot diameter and a better agreement with experimental evidence for temperature and species concentrations. Most simulations agree on the mean flame brush position, but it is evident that subgrid turbulence must be considered to achieve the correct turbulent flame speed. Qualitative comparisons of instantaneous snapshots of the flame show differences in the size of the resolved flame wrinkling patterns. These differences are (a) caused by the influence of the LES combustion model on the flame dynamics and (b) by the different simulation strategies in terms of grid, inlet condition and numerics. The simulations were conducted with approaches optimized for different objectives, for example low computational cost, or in another case, short turn around. (C) 2015 The Combustion Institute. Published by Elsevier Inc. All rights reserved
Brašno - Kruh '13
The "Flour-Bread '13“ Congress topics were the following: breeding and quality of cereal grains, grain storage and milling technology, analytical and rheological methods, baking technology, improvers and additives, starch and modified starch, extrusion and pasta production, biscuit and pastry products, nutritional quality of cereals, cereal food safety and cereal based functional foods