23 research outputs found

    Crocin synergistically enhances the anti-proliferative activity of 5-FU through Wnt/PI3K pathway in a mouse model of colitis-associated colorectal cancer

    Get PDF
    Colorectal-cancer (CRC) is the third most common cause of cancer-related-death, and hence there is a need for the identification of novel-agents to improve the efficacy of existing-therapies. There is growing evidence for the anti-tumor-activity of crocin, although its activity and molecular-mechanisms in CRC remains to be elucidated. Here we explored the therapeutic-application of crocin or its combination with 5-Flurouracil in a mouse-model of colitis-associated colon-cancer. The anti-proliferative-activity of crocin was assessed in 2- and 3-dimensional cell-culture-models. The migratory-behaviors were determined, while the expression-levels of several-genes were assessed by qRT-PCR/Western-blotting. We examined the anti-inflammatory properties of crocin by pathological-evaluation and disease-activity-index as well as oxidative/ antioxidant markers: malondialdehyde (MDA) and total-thiols (T-SH) levels and superoxide-dismutase (SOD) and catalase (CAT) activity. Crocin suppressed cell-growth and the invasive-behavior of CRC-cells through modulation of the Wnt-pathway and E-cadherin. Moreover, administration of crocin alone, or in combination with 5-FU dramatically reduced the tumor-number and tumor-size in both distal/mid-colon followed by reduction in disease-activity-index. Crocin also suppressed the colonic-inflammation induced by Dextran-sulfate-sodium and notably recovered the increased-levels of MDA, decreased Thiol-levels and activity of CAT-levels. Crocin was able to ameliorate the severe-inflammation with mucosal-ulcers and high grade-dysplastic-crypts as detected by inflammation-score, Crypt-loss, pathological-changes and histology-scores. We demonstrated an antitumor-activity of crocin in CRC and its potential role in improvement of inflammation with mucosal ulcers and high grade dysplastic crypts, supporting the desireability of further investigations on the therapeutic potential of this approach in CRC

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed

    Role of Akt signaling in resistance to DNA-targeted therapy

    No full text
    The Akt signal transduction pathway controls most hallmarks of cancer. Activation of the Akt cascade promotes a malignant phenotype and is also widely implicated in drug resistance. Therefore, the modulation of Akt activity is regarded as an attractive strategy to enhance the efficacy of cancer therapy and irradiation. This pathway consists of phosphatidylinositol 3 kinase (PI3K), mammalian target of rapamycin, and the transforming serine-threonine kinase Akt protein isoforms, also known as protein kinase B. DNA-targeted agents, such as platinum agents, taxanes, and antimetabolites, as well as radiation have had a significant impact on cancer treatment by affecting DNA replication, which is aberrantly activated in malignancies. However, the caveat is that they may also trigger the activation of repairing mechanisms, such as upstream and downstream cascade of Akt survival pathway. Thus, each target can theoretically be inhibited in view of improving the potency of conventional treatment. Akt inhibitors, e.g., MK-2206 and perifosine, or PI3K modulators, e.g., LY294002 and Wortmannin, have shown some promising results in favor of sensitizing the cancer cells to the therapy in vitro and in vivo, which have provided the rationale for incorporation of these novel agents into multimodality treatment of different malignancies. Nevertheless, despite the acceptable safety profile of some of these agents in the clinical studies, with regard to the efficacy, the results are still too preliminary. Hence, we need to wait for the upcoming data from the ongoing trials before utilizing them into the standard care of cancer patients

    Pharmacogenomic Modeling in Pancreatic Cancer—Letter

    No full text
    corecore