6 research outputs found

    Confinement and Localization on Domain Walls

    Full text link
    We continue the studies of localization of the U(1) gauge fields on domain walls. Depending on dynamics of the bulk theory the gauge field localized on the domain wall can be either in the Coulomb phase or squeezed into flux tubes implying (Abelian) confinement of probe charges on the wall along the wall surface. First, we consider a simple toy model with one flavor in the bulk at weak coupling (a minimal model) realizing the latter scenario. We then suggest a model presenting an extension of the Seiberg--Witten theory which is at strong coupling, but all theoretical constructions are under full control if we base our analysis on a dual effective action. Finally, we compare our findings with the wall in a "nonminimal" theory with two distinct quark flavors that had been studied previously. In this case the U(1) gauge field trapped on the wall is exactly massless because it is the Goldstone boson of a U(1) symmetry in the bulk spontaneously broken on the wall. The theory on the wall is in the Coulomb phase. We explain why the mechanism of confinement discussed in the first part of the paper does not work in this case, and strings are not formed on the walls.Comment: 55 pp; v2: several remarks adde

    Strings Inside Walls in N=1 Super Yang-Mills

    Full text link
    We conjecture the existence of strings bounded inside walls in SU(n)(n) N=1\N=1 Super Yang-Mills theory. These strings carry Z[k,n]\Z_{[k,n]} quantum number, where [k,n][k,n] is the greatest common divisor between kk, the charge of the wall, and nn. We provide field-theoretical arguments and string-theoretical evidences, both from MQCD and from gauge-gravity correspondence. We interpret this result from the point of view of the low-energy effective action living on the kk-wall.Comment: 25 pp. Major changes. In particular, following the recent work arXiv:0807.1908 we have been able to give a field theoretical proof of the statement. We have also corrected an important erroneous interpretation in the previous version regarding the 2+1 effective action; Typo

    Solitons in the Higgs phase -- the moduli matrix approach --

    Full text link
    We review our recent work on solitons in the Higgs phase. We use U(N_C) gauge theory with N_F Higgs scalar fields in the fundamental representation, which can be extended to possess eight supercharges. We propose the moduli matrix as a fundamental tool to exhaust all BPS solutions, and to characterize all possible moduli parameters. Moduli spaces of domain walls (kinks) and vortices, which are the only elementary solitons in the Higgs phase, are found in terms of the moduli matrix. Stable monopoles and instantons can exist in the Higgs phase if they are attached by vortices to form composite solitons. The moduli spaces of these composite solitons are also worked out in terms of the moduli matrix. Webs of walls can also be formed with characteristic difference between Abelian and non-Abelian gauge theories. We characterize the total moduli space of these elementary as well as composite solitons. Effective Lagrangians are constructed on walls and vortices in a compact form. We also present several new results on interactions of various solitons, such as monopoles, vortices, and walls. Review parts contain our works on domain walls (hep-th/0404198, hep-th/0405194, hep-th/0412024, hep-th/0503033, hep-th/0505136), vortices (hep-th/0511088, hep-th/0601181), domain wall webs (hep-th/0506135, hep-th/0508241, hep-th/0509127), monopole-vortex-wall systems (hep-th/0405129, hep-th/0501207), instanton-vortex systems (hep-th/0412048), effective Lagrangian on walls and vortices (hep-th/0602289), classification of BPS equations (hep-th/0506257), and Skyrmions (hep-th/0508130).Comment: 89 pages, 33 figures, invited review article to Journal of Physics A: Mathematical and General, v3: typos corrected, references added, the published versio
    corecore