22 research outputs found

    Diagonal Slice Four-Wave Mixing: Natural Separation of Coherent Broadening Mechanisms

    Full text link
    We present an ultrafast coherent spectroscopy data acquisition scheme that samples slices of the time domain used in multidimensional coherent spectroscopy to achieve faster data collection than full spectra. We derive analytical expressions for resonance lineshapes using this technique that completely separate homogeneous and inhomogeneous broadening contributions into separate projected lineshapes for arbitrary inhomogeneous broadening. These lineshape expressions are also valid for slices taken from full multidimensional spectra and allow direct measurement of the parameters contributing to the lineshapes in those spectra as well as our own

    Coherent Excitonic Coupling in an Asymmetric Double InGaAs Quantum Well Arises from Many-Body Effects

    Full text link
    We study an asymmetric double InGaAs quantum well using optical two-dimensional coherent spectroscopy. The collection of zero-quantum, one-quantum, and two-quantum two-dimensional spectra provides a unique and comprehensive picture of the double well coherent optical response. Coherent and incoherent contributions to the coupling between the two quantum well excitons are clearly separated. An excellent agreement with density matrix calculations reveals that coherent interwell coupling originates from many-body interactions

    Direct imaging of surface plasmon polariton dispersion in gold and silver thin films

    Get PDF
    We image the dispersion of surface plasmon polaritons in gold and silver thin films of 30 and 50 nm thickness, using angle-resolved white light spectroscopy in the Kretschmann geometry. Calibrated dispersion curves are obtained over a wavelength range spanning from 550 to 900 nm. We obtain good qualitative agreement with calculated dispersion curves that take into account the thickness of the thin film

    The Excitation Ladder of Cavity Polaritons

    Get PDF
    Multidimensional coherent spectroscopy directly unravels multiply excited states that overlap in a linear spectrum. We report multidimensional coherent optical photocurrent spectroscopy in a semiconductor polariton diode and explore the excitation ladder of cavity polaritons. We measure doubly and triply avoided crossings for pairs and triplets of exciton-polaritons, demonstrating the strong coupling between light and dressed doublet and triplet semiconductor excitations. These results demonstrate that multiply excited excitonic states strongly coupled to a microcavity can be described as two coupled quantum-anharmonic ladders

    Excitation Ladder of Cavity Polaritons

    Get PDF
    Multidimensional coherent spectroscopy directly unravels multiply excited states that overlap in a linear spectrum. We report multidimensional coherent optical photocurrent spectroscopy in a semiconductor polariton diode and explore the excitation ladder of cavity polaritons. We measure doubly and triply avoided crossings for pairs and triplets of exciton polaritons, demonstrating the strong coupling between light and dressed doublet and triplet semiconductor excitations. These results demonstrate that multiply excited excitonic states strongly coupled to a microcavity can be described as two coupled quantum-anharmonic ladders

    Hidden Silicon-Vacancy Centers in Diamond

    Get PDF
    We characterize a high-density sample of negatively charged silicon-vacancy (SiV−^-) centers in diamond using collinear optical multidimensional coherent spectroscopy. By comparing the results of complementary signal detection schemes, we identify a hidden population of \ce{SiV^-} centers that is not typically observed in photoluminescence, and which exhibits significant spectral inhomogeneity and extended electronic T2T_2 times. The phenomenon is likely caused by strain, indicating a potential mechanism for controlling electric coherence in color-center-based quantum devices

    Demonstration of sub-3 ps temporal resolution with a superconducting nanowire single-photon detector

    Get PDF
    Improvements in temporal resolution of single-photon detectors enable increased data rates and transmission distances for both classical and quantum optical communication systems, higher spatial resolution in laser ranging, and observation of shorter-lived fluorophores in biomedical imaging. In recent years, superconducting nanowire single-photon detectors (SNSPDs) have emerged as the most efficient time-resolving single-photon-counting detectors available in the near-infrared, but understanding of the fundamental limits of timing resolution in these devices has been limited due to a lack of investigations into the timescales involved in the detection process. We introduce an experimental technique to probe the detection latency in SNSPDs and show that the key to achieving low timing jitter is the use of materials with low latency. By using a specialized niobium nitride SNSPD we demonstrate that the system temporal resolution can be as good as 2.6 ± 0.2 ps for visible wavelengths and 4.3 ± 0.2 ps at 1,550 nm
    corecore