7 research outputs found

    Decimated little brown bats show potential for adaptive change

    No full text
    The degree to which species can rapidly adapt is key to survival in the face of climatic and other anthropogenic changes. For little brown bats (Myotis lucifugus), whose populations have experienced declines of over 90% because of the introduced fungal pathogen that causes white-nose syndrome (WNS), survival of the species may ultimately depend upon its capacity for adaptive change. Here, we present evidence of selectively driven change (adaptation), despite dramatic nonadaptive genomic shifts (genetic drift) associated with population declines. We compared the genetic makeups of wild survivors versus non-survivors of WNS, and found significant shifts in allele frequencies of genes associated with regulating arousal from hibernation (GABARB1), breakdown of fats (cGMP-PK1), and vocalizations (FOXP2). Changes at these genes are suggestive of evolutionary adaptation, given that WNS causes bats to arouse with unusual frequency from hibernation, contributing to premature depletion of fat reserves. However, whether these putatively adaptive shifts in allele frequencies translate into sufficient increases in survival for the species to rebound in the face of WNS is unknown

    Decimated little brown bats show potential for adaptive change

    No full text
    The degree to which species can rapidly adapt is key to survival in the face of climatic and other anthropogenic changes. For little brown bats (Myotis lucifugus), whose populations have experienced declines of over 90% because of the introduced fungal pathogen that causes white-nose syndrome (WNS), survival of the species may ultimately depend upon its capacity for adaptive change. Here, we present evidence of selectively driven change (adaptation), despite dramatic nonadaptive genomic shifts (genetic drift) associated with population declines. We compared the genetic makeups of wild survivors versus non-survivors of WNS, and found significant shifts in allele frequencies of genes associated with regulating arousal from hibernation (GABARB1), breakdown of fats (cGMP-PK1), and vocalizations (FOXP2). Changes at these genes are suggestive of evolutionary adaptation, given that WNS causes bats to arouse with unusual frequency from hibernation, contributing to premature depletion of fat reserves. However, whether these putatively adaptive shifts in allele frequencies translate into sufficient increases in survival for the species to rebound in the face of WNS is unknown

    Landscape connectivity among coastal giant salamander (Dicamptodon tenebrosus) populations shows no association with land use, fire frequency, or river drainage but exhibits genetic signatures of potential conservation concern

    No full text
    Determining the genetic consequences of both historical and contemporary events can clarify the effects of the environment on population connectivity and inform conservation decisions. Historical events (like glaciations) and contemporary factors (like logging) can disrupt gene flow between populations. This is especially true among species with specialized ecological requirements and low dispersal ability, like amphibians. We test for the genetic consequences of historical and contemporary disturbances in the coastal giant salamander (Dicamptodon tenebrosus) in the Pacific Northwest of the United States. We consider predictions based on the contemporary landscape (habitat connectivity, logging, forest fires, and topography), in addition to relatively ancient post-Pleistocene range expansion (following the last glacial retreat). To assess local versus larger-scale effects, we sampled 318 individuals across 23 sites, which were clustered in five sampling regions. Genetic variation was assessed using five microsatellite markers. We found evidence of (i) historical regional isolation, with decreased genetic diversity among more recently colonized northern sites, as well as (ii) high levels of inbreeding and loss of heterozygosity at local scales, despite relatively low overall population differentiation (FST) or strong evidence for population bottlenecks. Genetic diversity was not associated with contemporary disturbances (logging or fire), and there were no detectable effects on the genetic connectivity of populations based on intervening landscape features (habitat fragmentation and topography). However, lower genetic diversity in more northern regions indicates a lag in recovery of genetic diversity following post-Pleistocene expansion. Additionally, some populations had evidence of having undergone a recent genetic bottleneck or had high inbreeding (FIS) values. Lower genetic diversity in more northern sites means populations may be more vulnerable to future environmental changes, and managing for connectivity alone may not be sufficient given low mobility. Recent apparent reductions in some populations were not clearly linked to anthropogenic disturbances we examined. This suggests the type of disturbances this species is sensitive to may not be well understood

    Influence of a Large Lake on the Winter Range of a Small Mammal: Lake Michigan and the Silver-Haired Bat (Lasionycteris noctivagans)

    No full text
    We examine factors affecting the winter range limit of a migrating mammal, the silver-haired bat (Lasionycteris noctivagans), in states surrounding Lake Michigan, the fourth largest freshwater lake in the world. Using 555 citizen-based captures gathered between 1977 and 2016, we show that silver-haired bats overwinter (December–February) as far north as the 45th parallel, in areas roughly demarcated by the −12.2 °C (10 °F) mean daily minimum isotherm for January. Although summering populations adjacent to the lake are dominated by males, wintering animals are predominantly female and presumably migrants from north of Lake Superior. Logistic regression suggests that silver-haired bats are more likely to overwinter in warm areas, in counties near the lake, in urbanized locales, and on the west side of the lake. We believe that these small-bodied, solitary bats are hibernating in buildings and that use of human-made structures has allowed the silver-haired bat to overwinter in regions that are devoid of mines, caves and rock crevices and that are too cold for successful hibernation in trees. Lake Michigan impacts where this animal overwinters, presumably through the moderating influence of the lake on multiple aspects of the surrounding climate and because the shoreline likely is a major migratory pathway

    Exceptional Longevity in Little Brown Bats Still Occurs, despite Presence of White-Nose Syndrome

    No full text
    White-nose syndrome is an introduced fungal disease that has reduced the size of hibernating populations of little brown bats Myotis lucifugus by 90% across much of eastern North America since 2007. Herein, we report the recapture of eight banded little brown bats, all males, with minimum ages of 18.6–25.6 y. The recaptures occurred during winter 2019–2020, at a hibernaculum in Michigan where white-nose syndrome likely has been present since 2013–2014, indicating that these old and apparently healthy males are in their seventh season of exposure to the disease. Hence, our data suggest that a long life in little brown bats and existence of white-nose syndrome are not necessarily incompatible
    corecore