52 research outputs found

    Molecular mechanisms of autophagy-based drug resistance in cancer cells

    Get PDF

    AUTOPHAGY OF METALLOTHIONEINS PREVENTS TNF-INDUCED OXIDATIVE STRESS AND TOXICITY IN HEPATOMA CELLS

    Get PDF
    Lysosomal membrane permeabilization (LMP) induced by oxidative stress has recently emerged as a prominent mechanism behind TNF cytotoxicity. This pathway relies on diffusion of hydrogen peroxide into lysosomes containing redox-active iron, accumulated by breakdown of iron-containing proteins and subcellular organelles. Upon oxidative lysosomal damage, LMP allows relocation to the cytoplasm of low mass iron and acidic hydrolases that contribute to DNA and mitochondrial damage, resulting in death by apoptosis or necrosis. Here we investigate the role of lysosomes and free iron in death of HTC cells, a rat hepatoma line, exposed to TNF following metallothionein (MT) upregulation. Iron-binding MT does not normally occur in HTC cells in significant amounts. Intracellular iron chelation attenuates TNF and cycloheximide (CHX)-induced LMP and cell death, demonstrating the critical role of this transition metal in mediating cytokine lethality. MT upregulation, combined with starvation-activated MT autophagy almost completely suppresses TNF and CHX toxicity, while impairment of both autophagy and MT upregulation by silencing of Atg7, and Mt1a and/or Mt2a, respectively, abrogates protection. Interestingly, MT upregulation by itself has little effect, while stimulated autophagy alone depresses cytokine toxicity to some degree. These results provide evidence that intralysosomal iron-catalyzed redox reactions play a key role in TNF and CHX-induced LMP and toxicity. The finding that chelation of intralysosomal iron achieved by autophagic delivery of MT, and to some degree probably of other iron-binding proteins as well, into the lysosomal compartment is highly protective provides a putative mechanism to explain autophagy-related suppression of death by TNF and CHX

    Hypoxia up-regulates SERPINB3 through HIF-2\u3b1 in human liver cancer cells.

    Get PDF
    SERPINB3 is a cysteine-proteases inhibitor up-regulated in a significant number of cirrhotic patients carrying hepatocellular carcinoma (HCC) and recently proposed as a prognostic marker for HCC early recurrence. SERPINB3 has been reported to stimulate proliferation, inhibit apoptosis and, similar to what reported for hypoxia, to trigger epithelial-to-mesenchymal transition (EMT) and increased invasiveness in liver cancer cells. This study has investigated whether SERPINB3 expression is regulated by hypoxia-related mechanisms in liver cancer cells. Exposure of HepG2 and Huh7 cells to hypoxia up-regulated SERPINB3 transcription, protein synthesis and release in the extracellular medium. Hypoxia-dependent SERPINB3 up-regulation was selective (no change detected for SERPINB4) and operated through hypoxia inducible factor (HIF)-2\u3b1 (not HIF-1\u3b1) binding to SERPINB3 promoter, as confirmed by chromatin immuno-precipitation assay and silencing experiments employing specific siRNAs. HIF-2\u3b1-mediated SERPINB3 up-regulation under hypoxic conditions required intracellular generation of ROS. Immuno-histochemistry (IHC) and transcript analysis, performed in human HCC specimens, revealed co-localization of the two proteins in liver cancer cells and the existence of a positive correlation between HIF-2\u3b1 and SERPINB3 transcript levels, respectively. Hypoxia, through HIF-2\u3b1-dependent and redox-sensitive mechanisms, up-regulates the transcription, synthesis and release of SERPINB3, a molecule with a high oncogenic potential

    Hepatocyte-specific deletion of HIF2α prevents NASH-related liver carcinogenesis by decreasing cancer cell proliferation

    Get PDF
    Background & aims: Hypoxia and hypoxia-inducible factors (HIFs) are involved in chronic liver disease progression. We previously showed that hepatocyte HIF-2\u3b1 activation contributed significantly to nonalcoholic fatty liver disease progression in experimental animals and human patients. In this study, using an appropriate genetic murine model, we mechanistically investigated the involvement of hepatocyte HIF-2\u3b1 in experimental nonalcoholic steatohepatitis (NASH)-related carcinogenesis. Methods: The role of HIF-2\u3b1 was investigated by morphologic, cellular, and molecular biology approaches in the following: (1) mice carrying hepatocyte-specific deletion of HIF-2\u3b1 (HIF-2\u3b1-/- mice) undergoing a NASH-related protocol of hepatocarcinogenesis; (2) HepG2 cells stably transfected to overexpress HIF-2\u3b1; and (3) liver specimens from NASH patients with hepatocellular carcinoma. Results: Mice carrying hepatocyte-specific deletion of HIF-2\u3b1 (hHIF-2\u3b1-/-) showed a significant decrease in the volume and number of liver tumors compared with wild-type littermates. These effects did not involve HIF-1\u3b1 changes and were associated with a decrease of cell proliferation markers proliferating cell nuclear antigen and Ki67. In both human and rodent nonalcoholic fatty liver disease-related tumors, HIF-2\u3b1 levels were strictly associated with hepatocyte production of SerpinB3, a mediator previously shown to stimulate liver cancer cell proliferation through the Hippo/Yes-associated protein (YAP)/c-Myc pathway. Consistently, we observed positive correlations between the transcripts of HIF-2\u3b1, YAP, and c-Myc in individual hepatocellular carcinoma tumor masses, while HIF-2\u3b1 deletion down-modulated c-Myc and YAP expression without affecting extracellular signal-regulated kinase 1/2, c-Jun N-terminal kinase, and AKT-dependent signaling. In\ua0vitro data confirmed that HIF-2\u3b1 overexpression induced HepG2 cell proliferation through YAP-mediated mechanisms. Conclusions: These results indicate that the activation of HIF-2\u3b1 in hepatocytes has a critical role in liver carcinogenesis during NASH progression, suggesting that HIF-2\u3b1-blocking agents may serve as novel putative therapeutic tools

    Oncostatin M is overexpressed in NASH-related hepatocellular carcinoma and promotes cancer cell invasiveness and angiogenesis

    Get PDF
    : Oncostatin M (OSM) is a pleiotropic cytokine of the interleukin (IL)-6 family that contributes to the progression of chronic liver disease. Here we investigated the role of OSM in the development and progression of hepatocellular carcinoma (HCC) in NAFLD/NASH. The role of OSM was investigated in: a) selected cohorts of NAFLD/NASH HCC patients; b) liver cancer cells exposed to human recombinant OSM or stably transfected to overexpress human OSM; c) murine HCC xenografts; d) a murine NASH-related model of hepatic carcinogenesis. OSM was found to be selectively overexpressed in HCC cells of NAFLD/NASH patients, depending on tumor grade. OSM serum levels, barely detectable in patients with simple steatosis or NASH, were increased in patients with cirrhosis, and more evident in those carrying HCC. In this latter group, OSM serum levels were significantly higher in the subjects with intermediate/advanced HCCs and correlated with poor survival. Cell culture experiments indicated that OSM upregulation in hepatic cancer cells contributes to HCC progression by inducing epithelial-to-mesenchymal transition and increased invasiveness of cancer cells as well as by inducing angiogenesis, which is of critical relevance. In murine xenografts, OSM overexpression was associated with slower tumor growth, but an increased rate of lung metastases. Overexpression of OSM and its positive correlation with the angiogenic switch were also confirmed in a murine model of NAFLD/NASH-related hepatocarcinogenesis. Consistent with this, analysis of liver specimens from human NASH-related HCCs with vascular invasion showed that OSM was expressed by liver cancer cells invading hepatic vessels. In conclusion, OSM up-regulation appears to be a specific feature of HCC arising on a NAFLD/NASH background, and it correlates with clinical parameters and disease outcome. Our data highlight a novel pro-carcinogenic contribution for OSM in NAFLD/NASH, suggesting a role of this factor as a prognostic marker and a putative potential target for therapy. This article is protected by copyright. All rights reserved
    • …
    corecore