240 research outputs found

    Benchmark on neutron capture extracted from (d,p)(d,p) reactions

    Get PDF
    Direct neutron capture reactions play an important role in nuclear astrophysics and applied physics. Since for most unstable short-lived nuclei it is not possible to measure the (n,Îł)(n, \gamma) cross sections, (d,p)(d,p) reactions have been used as an alternative indirect tool. We analyze simultaneously 48Ca(d,p)49Ca^{48}{\rm Ca}(d,p)^{49}{\rm Ca} at deuteron energies 2,13,192, 13, 19 and 56 MeV and the thermal (n,Îł)(n,\gamma) reaction at 25 meV. We include results for the ground state and the first excited state of 49^{49}Ca. From the low-energy (d,p)(d,p) reaction, the neutron asymptotic normalization coefficient (ANC) is determined. Using this ANC, we extract the spectroscopic factor (SF) from the higher energy (d,p)(d,p) data and the (n,Îł)(n, \gamma) data. The SF obtained through the 56 MeV (d,p)(d,p) data are less accurate but consistent with those from the thermal capture. We show that to have a similar dependence on the single particle parameters as in the (n,Îł)(n, \gamma), the (d,p) reaction should be measured at 30 MeV.Comment: 5 pg, 4 figs, Phys. Rev. C (rapid) in pres

    Are spectroscopic factors from transfer reactions consistent with asymptotic normalisation coefficients?

    Full text link
    It is extremely important to devise a reliable method to extract spectroscopic factors from transfer cross sections. We analyse the standard DWBA procedure and combine it with the asymptotic normalisation coefficient, extracted from an independent data set. We find that the single particle parameters used in the past generate inconsistent asymptotic normalization coefficients. In order to obtain a consistent spectroscopic factor, non-standard parameters for the single particle overlap functions can be used but, as a consequence, often reduced spectroscopic strengths emerge. Different choices of optical potentials and higher order effects in the reaction model are also studied. Our test cases consist of: 14^{14}C(d,p)15^{15}C(g.s.) at Edlab=14E_d^{lab}=14 MeV, 16^{16}O(d,p)17^{17}O(g.s.) at Edlab=15E_d^{lab}=15 MeV and 40^{40}Ca(d,p)41^{41}Ca(g.s.) at Edlab=11E_d^{lab}=11 MeV. We underline the importance of performing experiments specifically designed to extract ANCs for these systems.Comment: 15 pages, 12 figures, Phys. Rev. C (in press

    Combined method to extract spectroscopic information

    Get PDF
    Spectroscopic factors (SF) play an important role in nuclear physics and astrophysics. The traditional method of extracting SF from direct transfer reactions suffers from serious ambiguities. We discuss a modified method which is based on including the asymptotic normalization coefficient (ANC) of the overlap functions into the transfer analysis. In the modified method the contribution of the external part of the reaction amplitude, typically dominant, is fixed and the SF is determined from fitting the internal part. We illustrate the modified method with (d,p)(d,p) reactions on 208Pb,12C{}^{208}{\rm Pb}, {}^{12}{\rm C}, and 84Se{}^{84}{\rm Se} targets at different energies. The modified method allows one to extract the SF, which do not depend on the shape of the single-particle nucleon-target interaction, and has the potential of improving the reliability and accuracy of the structure information. This is specially important for nuclei on dripline, where not much is known.Comment: accepted in Phys. Rev. C, 4 pages and 2 figure

    Antisymmetrization of a Mean Field Calculation of the T-Matrix

    Full text link
    The usual definition of the prior(post) interaction V(V′)V(V^\prime ) between projectile and target (resp. ejectile and residual target) being contradictory with full antisymmetrization between nucleons, an explicit antisymmetrization projector A{\cal A} must be included in the definition of the transition operator, T≡V′A+V′AGV. T\equiv V^\prime{\cal A}+V^\prime{\cal A}GV. We derive the suitably antisymmetrized mean field equations leading to a non perturbative estimate of TT. The theory is illustrated by a calculation of forward α\alpha-α\alpha scattering, making use of self consistent symmetries.Comment: 30 pages, no figures, plain TeX, SPHT/93/14

    Application of Absorbing Boundary Condition to Nuclear Breakup Reactions

    Full text link
    Absorbing boundary condition approach to nuclear breakup reactions is investigated. A key ingredient of the method is an absorbing potential outside the physical area, which simulates the outgoing boundary condition for scattered waves. After discretizing the radial variables, the problem results in a linear algebraic equation with a sparse coefficient matrix, to which efficient iterative methods can be applicable. No virtual state such as discretized continuum channel needs to be introduced in the method. Basic aspects of the method are discussed by considering a nuclear two-body scattering problem described with an optical potential. We then apply the method to the breakup reactions of deuterons described in a three-body direct reaction model. Results employing the absorbing boundary condition are found to accurately coincide with those of the existing method which utilizes discretized continuum channels.Comment: 21 pages, 5 figures, RevTeX

    Reduced neutron spectroscopic factors when using potential geometries constrained by Hartree-Fock calculations

    Full text link
    We carry out a systematic analysis of angular distribution measurements for selected ground-state to ground-state (d,p) and (p,d) neutron transfer reactions, including the calcium isotopes. We propose a consistent three-body model reaction methodology in which we constrain the transferred-neutron bound state and nucleon-target optical potential geometries using modern Hartree-Fock calculations. Our deduced neutron spectroscopic factors are found to be suppressed by ~30% relative to independent-particle shell-model values, from 40Ca through 49Ca. The other nuclei studied, ranging from B to Ti, show similar average suppressions with respect to large-basis shell-model expectations. Our results are consistent with deduced spectroscopic strengths for neutrons and protons from intermediate energy nucleon knockout reactions, and for protons from (e,e'p) reactions, on well-bound nuclei. PACS: 24.50.+g, 24.10.Eq, 25.40.-h, 25.45.-zComment: 13 pages, 2 figures, Submitted to Physical Review

    Effect of continuum couplings in fusion of halo 11^{11}Be on 208^{208}Pb around the Coulomb barrier

    Get PDF
    The effect of continuum couplings in the fusion of the halo nucleus 11^{11}Be on 208^{208}Pb around the Coulomb barrier is studied using a three-body model within a coupled discretised continuum channels (CDCC) formalism. We investigate in particular the role of continuum-continuum couplings. These are found to hinder total, complete and incomplete fusion processes. Couplings to the projectile 1p1/21p_{1/2} bound excited state redistribute the complete and incomplete fusion cross sections, but the total fusion cross section remains nearly constant. Results show that continuum-continuum couplings enhance the irreversibility of breakup and reduce the flux that penetrates the Coulomb barrier. Converged total fusion cross sections agree with the experimental ones for energies around the Coulomb barrier, but underestimate those for energies well above the Coulomb barrier.Comment: 15 pages, 7 figures, accepted in Phys. Rev.

    Survey of ground state neutron Spectroscopic Factors from Li to Cr isotopes

    Full text link
    The ground state neutron spectroscopic factors for 80 nuclei ranging in Z from 3 to 24 have been extracted by analyzing the past measurements of the angular distributions from (d,p) and (p,d) reactions. We demonstrate an approach that provides systematic and consistent values with minimum assumptions. For the 61 nuclei that have been described by large-basis shell-model calculations, most experimental spectroscopic factors are reproduced to within 20%.Comment: 12 pages, 2 figures, 2 table

    Inclusion of virtual nuclear excitations in the formulation of the (e,e'N)

    Get PDF
    A wave-function framework for the theory of the (e,e'N) reaction is presented in order to justify the use of coupled channel equations in the usual Feynman matrix element. The overall wave function containing the electron and nucleon coordinates is expanded in a basis set of eigenstates of the nuclear Hamiltonian, which contain both bound states as well as continuum states.. The latter have an ingoing nucleon with a variable momentum Q incident on the daughter nucleus as a target, with as many outgoing channels as desirable. The Dirac Eqs. for the electron part of the wave function acquire inhomogeneous terms, and require the use of distorted electron Green's functions for their solutions. The condition that the asymptotic wave function contain only the appropriate momentum Q_k for the outgoing nucleon, which corresponds to the electron momentum k through energy conservation, is achieved through the use of the steepest descent saddle point method, commonly used in three-body calculations.Comment: 30 page
    • …
    corecore