365 research outputs found

    SPTpol: an instrument for CMB polarization measurements with the South Pole Telescope

    Get PDF
    SPTpol is a dual-frequency polarization-sensitive camera that was deployed on the 10-meter South Pole Telescope in January 2012. SPTpol will measure the polarization anisotropy of the cosmic microwave background (CMB) on angular scales spanning an arcminute to several degrees. The polarization sensitivity of SPTpol will enable a detection of the CMB “B-mode” polarization from the detection of the gravitational lensing of the CMB by large scale structure, and a detection or improved upper limit on a primordial signal due to inationary gravity waves. The two measurements can be used to constrain the sum of the neutrino masses and the energy scale of ination. These science goals can be achieved through the polarization sensitivity of the SPTpol camera and careful control of systematics. The SPTpol camera consists of 768 pixels, each containing two transition-edge sensor (TES) bolometers coupled to orthogonal polarizations, and a total of 1536 bolometers. The pixels are sensitive to light in one of two frequency bands centered at 90 and 150 GHz, with 180 pixels at 90 GHz and 588 pixels at 150 GHz. The SPTpol design has several features designed to control polarization systematics, including: singlemoded feedhorns with low cross-polarization, bolometer pairs well-matched to dfference atmospheric signals, an improved ground shield design based on far-sidelobe measurements of the SPT, and a small beam to reduce temperature to polarization leakage. We present an overview of the SPTpol instrument design, project status, and science projections

    SPTpol: an instrument for CMB polarization measurements with the South Pole Telescope

    Get PDF
    SPTpol is a dual-frequency polarization-sensitive camera that was deployed on the 10-meter South Pole Telescope in January 2012. SPTpol will measure the polarization anisotropy of the cosmic microwave background (CMB) on angular scales spanning an arcminute to several degrees. The polarization sensitivity of SPTpol will enable a detection of the CMB “B-mode” polarization from the detection of the gravitational lensing of the CMB by large scale structure, and a detection or improved upper limit on a primordial signal due to inationary gravity waves. The two measurements can be used to constrain the sum of the neutrino masses and the energy scale of ination. These science goals can be achieved through the polarization sensitivity of the SPTpol camera and careful control of systematics. The SPTpol camera consists of 768 pixels, each containing two transition-edge sensor (TES) bolometers coupled to orthogonal polarizations, and a total of 1536 bolometers. The pixels are sensitive to light in one of two frequency bands centered at 90 and 150 GHz, with 180 pixels at 90 GHz and 588 pixels at 150 GHz. The SPTpol design has several features designed to control polarization systematics, including: singlemoded feedhorns with low cross-polarization, bolometer pairs well-matched to dfference atmospheric signals, an improved ground shield design based on far-sidelobe measurements of the SPT, and a small beam to reduce temperature to polarization leakage. We present an overview of the SPTpol instrument design, project status, and science projections

    The AzTEC mm-Wavelength Camera

    Get PDF
    AzTEC is a mm-wavelength bolometric camera utilizing 144 silicon nitride micromesh detectors. Herein we describe the AzTEC instrument architecture and its use as an astronomical instrument. We report on several performance metrics measured during a three month observing campaign at the James Clerk Maxwell Telescope, and conclude with our plans for AzTEC as a facility instrument on the Large Millimeter Telescope.Comment: 13 pages, 15 figures, accepted for publication in Monthly Notice

    New Panoramic View of 12^{12}CO and 1.1 mm Continuum Emission in the Orion A Molecular Cloud. I. Survey Overview and Possible External Triggers of Star Formation

    Get PDF
    We present new, wide and deep images in the 1.1 mm continuum and the 12^{12}CO (JJ=1-0) emission toward the northern part of the Orion A Giant Molecular Cloud (Orion-A GMC). The 1.1 mm data were taken with the AzTEC camera mounted on the Atacama Submillimeter Telescope Experiment (ASTE) 10 m telescope in Chile, and the 12^{12}CO (JJ=1-0) data were with the 25 beam receiver (BEARS) on the NRO 45 m telescope in the On-The-Fly (OTF) mode. The present AzTEC observations are the widest (\timeform{1.D7} ×\times \timeform{2.D3}, corresponding to 12 pc ×\times 17 pc) and the highest-sensitivity (\sim9 mJy beam1^{-1}) 1.1 mm dust-continuum imaging of the Orion-A GMC with an effective spatial resolution of \sim 40\arcsec. The 12^{12}CO (JJ=1-0) image was taken over the northern \timeform{1D.2} \times\timeform{1D.2} (corresponding 9 pc ×\times 9 pc) area with a sensitivity of 0.93 K in TMBT_{\rm MB}, a velocity resolution of 1.0 km s1^{-1}, and an effective spatial resolution of 21\arcsec. With these data, together with the MSX 8 μ\mum, Spitzer 24 μ\mum and the 2MASS data, we have investigated the detailed structure and kinematics of molecular gas associated with the Orion-A GMC and have found evidence for interactions between molecular clouds and the external forces that may trigger star formation. Two types of possible triggers were revealed; 1) Collision of the diffuse gas on the cloud surface, particularly at the eastern side of the OMC-2/3 region, and 2) Irradiation of UV on the pre-existing filaments and dense molecular cloud cores. Our wide-field and high-sensitivity imaging have provided the first comprehensive view of the potential sites of triggered star formation in the Orion-A GMC.Comment: 32 pages, 20 figures, accepted for publication in PAS

    AzTEC millimeter survey of the COSMOS field - III. Source catalog over 0.72 sq. deg. and plausible boosting by large-scale structure

    Get PDF
    We present a 0.72 sq. deg. contiguous 1.1mm survey in the central area of the COSMOS field carried out to a 1sigma ~ 1.26 mJy/beam depth with the AzTEC camera mounted on the 10m Atacama Submillimeter Telescope Experiment (ASTE). We have uncovered 189 candidate sources at a signal-to-noise ratio S/N >= 3.5, out of which 129, with S/N >= 4, can be considered to have little chance of being spurious (< 2 per cent). We present the number counts derived with this survey, which show a significant excess of sources when compared to the number counts derived from the ~0.5 sq. deg. area sampled at similar depths in the Scuba HAlf Degree Extragalactic Survey (SHADES, Austermann et al. 2010). They are, however, consistent with those derived from fields that were considered too small to characterize the overall blank-field population. We identify differences to be more significant in the S > 5 mJy regime, and demonstrate that these excesses in number counts are related to the areas where galaxies at redshifts z < 1.1 are more densely clustered. The positions of optical-IR galaxies in the redshift interval 0.6 < z < 0.75 are the ones that show the strongest correlation with the positions of the 1.1mm bright population (S > 5 mJy), a result which does not depend exclusively on the presence of rich clusters within the survey sampled area. The most likely explanation for the observed excess in number counts at 1.1mm is galaxy-galaxy and galaxy-group lensing at moderate amplification levels, that increases in amplitude as one samples larger and larger flux densities. This effect should also be detectable in other high redshift populations.Comment: 21 pages, 17 figures, accepted for publication in MNRA

    Detection of an ultra-bright submillimeter galaxy in the Subaru/XMM-Newton Deep Field using AzTEC/ASTE

    Get PDF
    We report the detection of an extremely bright (\sim37 mJy at 1100 μ\mum and \sim91 mJy at 880 μ\mum) submillimeter galaxy (SMG), AzTEC-ASTE-SXDF1100.001 (hereafter referred to as SXDF1100.001 or Orochi), discovered in 1100 μ\mum observations of the Subaru/XMM-Newton Deep Field using AzTEC on ASTE. Subsequent CARMA 1300 μ\mum and SMA 880 μ\mum observations successfully pinpoint the location of Orochi and suggest that it has two components, one extended (FWHM of \sim 4^{\prime\prime}) and one compact (unresolved). Z-Spec on CSO has also been used to obtain a wide band spectrum from 190 to 308 GHz, although no significant emission/absorption lines are found. The derived upper limit to the line-to-continuum flux ratio is 0.1--0.3 (2 σ\sigma) across the Z-Spec band. Based on the analysis of the derived spectral energy distribution from optical to radio wavelengths of possible counterparts near the SMA/CARMA peak position, we suggest that Orochi is a lensed, optically dark SMG lying at z3.4z \sim 3.4 behind a foreground, optically visible (but red) galaxy at z1.4z \sim 1.4. The deduced apparent (i.e., no correction for magnification) infrared luminosity (LIRL_{\rm IR}) and star formation rate (SFR) are 6×10136 \times 10^{13} LL_{\odot} and 11000 MM_{\odot} yr1^{-1}, respectively, assuming that the LIRL_{\rm IR} is dominated by star formation. These values suggest that Orochi will consume its gas reservoir within a short time scale (3×1073 \times 10^{7} yr), which is indeed comparable to those in extreme starbursts like the centres of local ULIRGs.Comment: 18 pages, 13 figure
    corecore