23 research outputs found
Dendritic Polyglycerol Amine: An Enhanced Substrate to Support Long-Term Neural Cell Culture
Long-term stable cell culture is a critical tool to better understand cell function. Most adherent cell culture models require a polymer substrate coating of poly-lysine or poly-ornithine for the cells to adhere and survive. However, polypeptide-based substrates are degraded by proteolysis and it remains a challenge to maintain healthy cell cultures for extended periods of time. Here, we report the development of an enhanced cell culture substrate based on a coating of dendritic polyglycerol amine (dPGA), a non-protein macromolecular biomimetic of poly-lysine, to promote the adhesion and survival of neurons in cell culture. We show that this new polymer coating provides enhanced survival, differentiation and long-term stability for cultures of primary neurons or neurons derived from human induced pluripotent stem cells (hiPSCs). Atomic force microscopy analysis provides evidence that greater nanoscale roughness contributes to the enhanced capacity of dPGA-coated surfaces to support cells in culture. We conclude that dPGA is a cytocompatible, functionally superior, easy to use, low cost and highly stable alternative to poly-cationic polymer cell culture substrate coatings such as poly-lysine and poly-ornithine.
Summary statement
Here, we describe a novel dendritic polyglycerol amine-based substrate coating, demonstrating superior performance compared to current polymer coatings for long-term culture of primary neurons and neurons derived from induced pluripotent stem cells
Early Increase in Extrasynaptic NMDA Receptor Signaling and Expression Contributes to Phenotype Onset in Huntington's Disease Mice
SummaryN-methyl-D-aspartate receptor (NMDAR) excitotoxicity is implicated in the pathogenesis of Huntington's disease (HD), a late-onset neurodegenerative disorder. However, NMDARs are poor therapeutic targets, due to their essential physiological role. Recent studies demonstrate that synaptic NMDAR transmission drives neuroprotective gene transcription, whereas extrasynaptic NMDAR activation promotes cell death. We report specifically increased extrasynaptic NMDAR expression, current, and associated reductions in nuclear CREB activation in HD mouse striatum. The changes are observed in the absence of dendritic morphological alterations, before and after phenotype onset, correlate with mutation severity, and require caspase-6 cleavage of mutant huntingtin. Moreover, pharmacological block of extrasynaptic NMDARs with memantine reversed signaling and motor learning deficits. Our data demonstrate elevated extrasynaptic NMDAR activity in an animal model of neurodegenerative disease. We provide a candidate mechanism linking several pathways previously implicated in HD pathogenesis and demonstrate successful early therapeutic intervention in mice
Recommended from our members
Abnormal cortical synaptic plasticity in mice transgenic for exon 1 of the human Huntington's protein
Huntington's disease is a fatal neurodegenerative disorder characterised by a progressive motor, psychiatric and cognitive decline and associated with a marked loss of neurons in the cortex and striatum of affected individuals. The disease is inherited in an autosomal dominant fashion and is caused by a trinucleotide (CAG) repeat expansion in the gene encoding the protein huntingtin. Predictive genetic testing has revealed early cognitive deficits in asymptomatic gene carriers such as altered working memory, executive function and recognition memory. The perirhinal cortex is believed to process aspects of recognition memory. Evidence from primate studies suggests that decrements in neuronal firing within this cortical region encode recognition memory and that the underlying mechanism is an activity-dependent long-term depression (LTD) of excitatory neurotransmission, the converse of long-term potentiation (LTP). We have used the R6/1 mouse model of HD to assess synaptic plasticity in the perirhinal cortex. This mouse model provides an ideal tool for investigating early and progressive changes in synaptic function in HD. We report here that LTD at perirhinal synapses is markedly reduced in R6/1 mice. We also provide evidence to suggest that a reduction in dopamine D2 receptor signalling may be implicated
Early development of aberrant synaptic plasticity in a mouse model of Huntington's disease
Huntington's disease (HD) is a fatal neurodegenerative disorder characterized by progressive motor, psychiatric and cognitive decline. Marked neuronal loss occurs in the cortex and striatum. HD is inherited in an autosomal dominant fashion and caused by a trinucleotide repeat expansion (CAG) in the gene encoding the protein huntingtin. Predictive genetic testing has revealed early cognitive deficits in asymptomatic gene carriers at a time when there is little evidence for cell death, suggesting that impaired cognition results from a cellular or synaptic deficit, such as aberrant synaptic plasticity. Altered hippocampal long-term potentiation has been reported in mouse models of HD; however, the relationship between synaptic dysfunction and phenotype progression has not previously been characterized. We examined the age-dependency of aberrant hippocampal synaptic plasticity in the R6/1 mouse model of HD. Long-term depression (LTD) is a developmentally regulated form of plasticity, which normally declines by early adulthood. Young R6/1 mice follow the same pattern of LTD expression as controls, in that they express LTD in the first weeks of life, and then lose the ability with age. Unlike controls, R6/1 synapses later regain the ability to support LTD. This is associated with nuclear localization of mutant huntingtin, but occurs months prior to the formation of nuclear aggregates. We present the first detailed description of a progressive derailment of a functional neural correlate of cognitive processing in HD
Recommended from our members
Progressive CAG expansion in the brain of a novel R6/1-89Q mouse model of Huntington's disease with delayed phenotypic onset
Transgenic models representing Huntington's disease (HD) have proved useful for understanding the cascade of molecular events leading to the disease. We report an initial characterisation of a novel transgenic mouse model derived from a spontaneous truncation event within the R6/1 transgene. The transgene is widely expressed, carries 89 CAG repeats and the animals exhibit a significantly milder neurological phenotype with delayed onset compared to R6/1. Moreover, we report evidence of progressive somatic CAG expansions in the brain starting at an early age before an overt phenotype has developed. This novel line shares a common genetic ancestry with R6/1, differing only in CAG repeat number, and therefore, provides an additional tool with which to examine early molecular and neurophysiological changes in HD
Maternal gastrointestinal nematode infection alters hippocampal neuroimmunity, promotes synaptic plasticity, and improves resistance to direct infection in offspring
Abstract The developing brain is vulnerable to maternal bacterial and viral infections which induce strong inflammatory responses in the mother that are mimicked in the offspring brain, resulting in irreversible neurodevelopmental defects, and associated cognitive and behavioural impairments. In contrast, infection during pregnancy and lactation with the immunoregulatory murine intestinal nematode, Heligmosomoides bakeri, upregulates expression of genes associated with long-term potentiation (LTP) of synaptic networks in the brain of neonatal uninfected offspring, and enhances spatial memory in uninfected juvenile offspring. As the hippocampus is involved in spatial navigation and sensitive to immune events during development, here we assessed hippocampal gene expression, LTP, and neuroimmunity in 3-week-old uninfected offspring born to H. bakeri infected mothers. Further, as maternal immunity shapes the developing immune system, we assessed the impact of maternal H. bakeri infection on the ability of offspring to resist direct infection. In response to maternal infection, we found an enhanced propensity to induce LTP at Schaffer collateral synapses, consistent with RNA-seq data indicating accelerated development of glutamatergic synapses in uninfected offspring, relative to those from uninfected mothers. Hippocampal RNA-seq analysis of offspring of infected mothers revealed increased expression of genes associated with neurogenesis, gliogenesis, and myelination. Furthermore, maternal infection improved resistance to direct infection of H. bakeri in offspring, correlated with transfer of parasite-specific IgG1 to their serum. Hippocampal immunohistochemistry and gene expression suggest Th2/Treg biased neuroimmunity in offspring, recapitulating peripheral immunoregulation of H. bakeri infected mothers. These findings indicate maternal H. bakeri infection during pregnancy and lactation alters peripheral and neural immunity in uninfected offspring, in a manner that accelerates neural maturation to promote hippocampal LTP, and upregulates the expression of genes associated with neurogenesis, gliogenesis, and myelination
Chronic and acute LRRK2 silencing has no long-term behavioral effects, whereas wild-type and mutant LRRK2 overexpression induce motor and cognitive deficits and altered regulation of dopamine release
Introduction: Germline silencing of the PD-related protein LRRK2 does not alter glutamate or dopamine release in adult mice, but some exploratory abnormalities have been reported with ageing. Contrastingly, high levels of human LRRK2 cause locomotor alterations and cognitive defi cits accompanied by reduced striatal dopamine levels, with the latter also observed in G2019S mutant mice. Comparative cognitive and motor behavioral testing of LRRK2 KO, overexpressor and mutant overexpressor mice has not pre-viously been reported. Methods: Parallel, comparative behavioral characterization was performed assessing motor and cognitive abilities. Striatal antisense oligonucleotide injections were conducted to investigate the effects of acute LRRK2 silencing on behavior and dopamine fiber density. Striatal synaptosomes prepared from hG2019S mice assessed vesicular release of dopamine and its sensitivity to D2 autoreceptor stimulation. Results: Genetic ablation of LRRK2 has no long-term consequences on motor or cognitive function. Consistently, no effects on behavior or dopaminergic
fiber density were observed following acute striatal silencing. Conversely, 12-month OE mice show persistent locomotor defi cits and worsening of cognitive abilities; whereas, hG2019S mice display early hyperactivity and effective learning and memory that progress to decreased motor and cognitive deficits at older ages. The G2019S mutation does not affect vesicular dopamine release, but decreases its sensitivity to D2-mediated inhibition.
Conclusion: LRRK2 silencing is well tolerated in mouse, arguing PD does not result from LRRK2 loss of function. High levels of WT and G2019S LRRK2 produce similar but temporally distinct phenotypes, potentially modeling different stages of disease progression. The data implicate gain of LRRK2 function in the pathogenesis of PD
Inhibition of LRRK2 kinase activity rescues deficits in striatal dopamine physiology in VPS35 p.D620N knock-in mice
Abstract Dysregulation of dopamine neurotransmission profoundly affects motor, motivation and learning behaviors, and can be observed during the prodromal phase of Parkinson’s disease (PD). However, the mechanism underlying these pathophysiological changes remains to be elucidated. Mutations in vacuolar protein sorting 35 (VPS35) and leucine-rich repeat kinase 2 (LRRK2) both lead to autosomal dominant PD, and VPS35 and LRRK2 may physically interact to govern the trafficking of synaptic cargos within the endo-lysosomal network in a kinase-dependent manner. To better understand the functional role of VPS35 and LRRK2 on dopamine physiology, we examined Vps35 haploinsufficient (Haplo) and Vps35 p.D620N knock-in (VKI) mice and how their behavior, dopamine kinetics and biochemistry are influenced by LRRK2 kinase inhibitors. We found Vps35 p.D620N significantly elevates LRRK2-mediated phosphorylation of Rab10, Rab12 and Rab29. In contrast, Vps35 haploinsufficiency reduces phosphorylation of Rab12. While striatal dopamine transporter (DAT) expression and function is similarly impaired in both VKI and Haplo mice, that physiology is normalized in VKI by treatment with the LRRK2 kinase inhibitor, MLi-2. As a corollary, VKI animals show a significant increase in amphetamine induced hyperlocomotion, compared to Haplo mice, that is also abolished by MLi-2. Taken together, these data show Vps35 p.D620N confers a gain-of-function with respect to LRRK2 kinase activity, and that VPS35 and LRRK2 functionally interact to regulate DAT function and striatal dopamine transmission
Akt and AMPK activators rescue hyperexcitability in neurons from patients with bipolar disorderResearch in context
Summary: Background: Bipolar disorder (BD) is a multifactorial psychiatric illness affecting ∼1% of the global adult population. Lithium (Li), is the most effective mood stabilizer for BD but works only for a subset of patients and its mechanism of action remains largely elusive. Methods: In the present study, we used iPSC-derived neurons from patients with BD who are responsive (LR) or not (LNR) to lithium. Combined electrophysiology, calcium imaging, biochemistry, transcriptomics, and phosphoproteomics were employed to provide mechanistic insights into neuronal hyperactivity in BD, investigate Li's mode of action, and identify alternative treatment strategies. Findings: We show a selective rescue of the neuronal hyperactivity phenotype by Li in LR neurons, correlated with changes to Na+ conductance. Whole transcriptome sequencing in BD neurons revealed altered gene expression pathways related to glutamate transmission, alterations in cell signalling and ion transport/channel activity. We found altered Akt signalling as a potential therapeutic effect of Li in LR neurons from patients with BD, and that Akt activation mimics Li effect in LR neurons. Furthermore, the increased neural network activity observed in both LR & LNR neurons from patients with BD were reversed by AMP-activated protein kinase (AMPK) activation. Interpretation: These results suggest potential for new treatment strategies in BD, such as Akt activators in LR cases, and the use of AMPK activators for LNR patients with BD. Funding: Supported by funding from ERA PerMed, Bell Brain Canada Mental Research Program and Brain & Behavior Research Foundation