24 research outputs found

    Analogy Models for Prediction of Human Toxicity

    No full text

    The BLIS Framework: Experiments in Portability

    No full text
    BLIS is a new software framework for instantiating high-performance BLAS-like dense linear algebra libraries. We demonstrate how BLIS acts as a productivity multiplier by using it to implement the level-3 BLAS on a variety of current architectures. The systems for which we demonstrate the framework include state-of-the-art general-purpose, low-power, and many-core architectures. We show, with very little effort, how the BLIS framework yields sequential and parallel implementations that are competitive with the performance of ATLAS, OpenBLAS (an effort to maintain and extend the GotoBLAS), and commercial vendor implementations such as AMD's ACML, IBM's ESSL, and Intel's MKL libraries. Although most of this article focuses on single-core implementation, we also provide compelling results that suggest the framework's leverage extends to the multithreaded domain.BLIS is a new software framework for instantiating high-performance BLAS-like dense linear algebra libraries. We demonstrate how BLIS acts as a productivity multiplier by using it to implement the level-3 BLAS on a variety of current architectures. The systems for which we demonstrate the framework include state-of-the-art general-purpose, low-power, and many-core architectures. We show, with very little effort, how the BLIS framework yields sequential and parallel implementations that are competitive with the performance of ATLAS, OpenBLAS (an effort to maintain and extend the GotoBLAS), and commercial vendor implementations such as AMD's ACML, IBM's ESSL, and Intel's MKL libraries. Although most of this article focuses on single-core implementation, we also provide compelling results that suggest the framework's leverage extends to the multithreaded domain
    corecore