25 research outputs found

    Microstructural and Kinetic Evolution of Fe Doped MgH2 during H2 Cycling

    No full text
    The effect of extended H2 sorption cycles on the structure and on the hydrogen storage performances of MgH2 powders with 5 wt% of Fe particle catalyst is reported. MgH2 powders with and without Fe have been ball milled under Argon, the doped MgH2 nanocomposite has been cycled under hydrogen pressure up to a maximum of 47 desorption and absorption cycles at 300 °C. After acceleration during the first 10 cycles, the kinetics behavior of doped MgH2 is constant after extended cycling, in terms of maximum storage capacity and rate of sorption. The major effect of cycling on particle morphology is the progressive extraction of Mg from the MgO shell surrounding the powder particles. The Mg extraction from the MgO shell leaves the catalyst particles inside the hydride particles. Many empty MgO shells are observed in the pure ball milled MgH2 upon cycling at higher temperature, suggesting that this enhancement of the extraction efficiency is related to the higher operating temperature which favors Mg diffusivity with respect to the H ion one

    Hydrogen sorption properties of MgH2/NaBH4 composites

    No full text
    The hydrogen sorption properties of magnesium hydride-sodium borohydride composites prepared by means of high-energy ball milling under Ar atmosphere were investigated. Mutual influence of milling time and the content of NaBH4 were studied. Microstructural and morphological analyses were carried out using X-ray Diffraction (XRD), laser scattering measurements and Scanning Electron Microscopy (SEM), while kinetic analysis and cycling were performed in a Sieverts volumetric apparatus. It has been shown that low content of NaBH4 and short milling time are beneficial for hydrogen sorption kinetics. Copyright (C) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved

    Development of SEM Metallography for the Study of the Mg-MgH2 Phase Transformation

    No full text
    The study of sorption reactions of metal hydrides is the subject of numerous researches in connection with the development of a safe technology for hydrogen storage, and MgH2, in particular, is one of the most promising materials. Several efforts have been already carried out in order to understand the kinetic mechanisms involved in the MgH2 decomposition which is at the basis of H2 release. However, the role of additives and induced structural defects on the sorption cycles is not clear yet. With the purpose of supporting the reaction analysis we have developed an experimental protocol for the metallographic examination at high spatial resolution of partially desorbed MgH2 powders. In particular, this procedure allows cross-sectional analysis of powders embedded into conductive matrix, while the observation method produces a different contrast among metallic Mg, MgH2 and additive particles made of heavier materials.Materials and Technology for Hydrogen Storage : November 26-30, 2007

    Combination of immunotherapy with chemotherapy and radiotherapy in lung cancer: is this the beginning of the end for cancer?

    No full text
    Immune checkpoint inhibitors have significantly improved overall survival with an acceptable safety profile in a substantial proportion of non-small cell lung cancer (NSCLC) patients. However, not all patients are sensitive to immune checkpoint blockade and, in some cases, programmed death 1 (PD-1) or programmed death ligand 1 (PD-L1) inhibitors accelerate tumor progression. Several combination strategies are under evaluation, including the concomitant or sequential evaluation of chemotherapy or radiotherapy with immunotherapy. The current review provides an overview on the molecular rationale for the investigation of combinatorial approaches with chemotherapy or radiotherapy. Moreover, the results of completed clinical studies will be reported
    corecore