191 research outputs found

    Vacuum Bubbles Nucleation and Dark Matter Production through Gauge Symmetry Rearrangement

    Get PDF
    Modern particle physics and cosmology support the idea that a background of invisible material pervades the whole universe, and identify in the cosmic vacuum the ultimate source of matter-energy, both seen and unseen. Within the framework of the theory of fundamental relativistic membranes, we suggest a self-consistent, vacuum energy-driven mechanism for dark matter creation through gauge symmetry rearrangement.Comment: 22pages, RevTeX, no figures; accepted for publication in Phys.Rev.

    String Representation of Quantum Loops

    Get PDF
    We recover a general representation for the quantum state of a relativistic closed line (loop) in terms of string degrees of freedom.The general form of the loop functional splits into the product of the Eguchi functional, encoding the holographic quantum dynamics, times the Polyakov path integral, taking into account the full Bulk dynamics, times a loop effective action, which is needed to renormalize boundary ultraviolet divergences. The Polyakov string action is derived as an effective actionfrom a phase space,covariant,Schild action, by functionally integrating out the world-sheet coordinates.The area coordinates description of the boundary quantum dynamics, is shown to be induced by the ``zero mode'' of the bulk quantum fluctuations. Finally, we briefly comment about a ``unified, fully covariant'' description of points, loops and strings in terms of Matrix Coordinates.Comment: 16 Pages, RevTeX, no figure

    Postmodern String Theory: Stochastic Formulation

    Full text link
    In this paper we study the dynamics of a statistical ensemble of strings, building on a recently proposed gauge theory of the string geodesic field. We show that this stochastic approach is equivalent to the Carath\'eodory formulation of the Nambu-Goto action, supplemented by an averaging procedure over the family of classical string world-sheets which are solutions of the equation of motion. In this new framework, the string geodesic field is reinterpreted as the Gibbs current density associated with the string statistical ensemble. Next, we show that the classical field equations derived from the string gauge action, can be obtained as the semi-classical limit of the string functional wave equation. For closed strings, the wave equation itself is completely analogous to the Wheeler-DeWitt equation used in quantum cosmology. Thus, in the string case, the wave function has support on the space of all possible spatial loop configurations. Finally, we show that the string distribution induces a multi-phase, or {\it cellular} structure on the spacetime manifold characterized by domains with a purely Riemannian geometry separated by domain walls over which there exists a predominantly Weyl geometry.Comment: 24pages, ReVTe

    On the equivalence between topologically and non-topologically massive abelian gauge theories

    Get PDF
    We analyse the equivalence between topologically massive gauge theory (TMGT) and different formulations of non-topologically massive gauge theories (NTMGTs) in the canonical approach. The different NTMGTs studied are St\"uckelberg formulation of (A) a first order formulation involving one and two form fields, (B) Proca theory, and (C) massive Kalb-Ramond theory. We first quantise these reducible gauge systems by using the phase space extension procedure and using it, identify the phase space variables of NTMGTs which are equivalent to the canonical variables of TMGT and show that under this the Hamiltonian also get mapped. Interestingly it is found that the different NTMGTs are equivalent to different formulations of TMGTs which differ only by a total divergence term. We also provide covariant mappings between the fields in TMGT to NTMGTs at the level of correlation function.Comment: One reference added and a typos corrected. 15 pages, To appear in Mod. Phys. Lett.

    Gauge Theory of the String Geodesic Field

    Full text link
    A relativistic string is usually represented by the Nambu-Goto action in terms of the extremal area of a 2-dimensional timelike submanifold of Minkowski space. Alternatively, a family of classical solutions of the string equation of motion can be globally described in terms of the associated geodesic field. In this paper we propose a new gauge theory for the geodesic field of closed and open strings. Our approach solves the technical and conceptual problems affecting previous attempts to describe strings in terms of local field variables. The connection between the geodesic field, the string current and the Kalb-Ramond gauge potential is discussed and clarified. A non-abelian generalization and the generally covariant form of the model are also discussed.Comment: 38 pages, PHYZZX, UTS-DFT-92-2

    Hausdorff dimension of a quantum string

    Full text link
    In the path integral formulation of quantum mechanics, Feynman and Hibbs noted that the trajectory of a particle is continuous but nowhere differentiable. We extend this result to the quantum mechanical path of a relativistic string and find that the ``trajectory'', in this case, is a fractal surface with Hausdorff dimension three. Depending on the resolution of the detecting apparatus, the extra dimension is perceived as ``fuzziness'' of the string world-surface. We give an interpretation of this phenomenon in terms of a new form of the uncertainty principle for strings, and study the transition from the smooth to the fractal phase.Comment: 18 pages, non figures, ReVTeX 3.0, in print on Phys.Rev.

    Higher Derivative Gravity and Torsion from the Geometry of C-spaces

    Full text link
    We start from a new theory (discussed earlier) in which the arena for physics is not spacetime, but its straightforward extension-the so called Clifford space (CC-space), a manifold of points, lines, areas, etc..; physical quantities are Clifford algebra valued objects, called polyvectors. This provides a natural framework for description of supersymmetry, since spinors are just left or right minimal ideals of Clifford algebra. The geometry of curved CC-space is investigated. It is shown that the curvature in CC-space contains higher orders of the curvature in the underlying ordinary space. A CC-space is parametrized not only by 1-vector coordinates xμx^\mu but also by the 2-vector coordinates σμν\sigma^{\mu \nu}, 3-vector coordinates σμνρ\sigma^{\mu \nu \rho}, etc., called also {\it holographic coordinates}, since they describe the holographic projections of 1-lines, 2-loops, 3-loops, etc., onto the coordinate planes. A remarkable relation between the "area" derivative \p/ \p \sigma^{\mu \nu} and the curvature and torsion is found: if a scalar valued quantity depends on the coordinates σμν\sigma^{\mu \nu} this indicates the presence of torsion, and if a vector valued quantity depends so, this implies non vanishing curvature. We argue that such a deeper understanding of the CC-space geometry is a prerequisite for a further development of this new theory which in our opinion will lead us towards a natural and elegant formulation of MM-theory.Comment: 19 pages; A section describing the main physical implications of C-space is added, and the rest of the text is modified accordingl

    Spin Gauge Theory of Gravity in Clifford Space

    Full text link
    A theory in which 16-dimensional curved Clifford space (C-space) provides a realization of Kaluza-Klein theory is investigated. No extra dimensions of spacetime are needed: "extra dimensions" are in C-space. We explore the spin gauge theory in C-space and show that the generalized spin connection contains the usual 4-dimensional gravity and Yang-Mills fields of the U(1)xSU(2)xSU(3) gauge group. The representation space for the latter group is provided by 16-component generalized spinors composed of four usual 4-component spinors, defined geometrically as the members of four independent minimal left ideals of Clifford algebra.Comment: 9 pages, talk presented at the QG05 conference, 12-16 September 2005, Cala Gonone, Ital

    Instanton effects and linear-chiral duality

    Full text link
    We discuss duality between the linear and chiral dilaton formulations, in the presence of super-Yang-Mills instanton corrections to the effective action. In contrast to previous work on the subject, our approach appeals directly to explicit instanton calculations and does not rely on the introduction of an auxiliary Veneziano-Yankielowicz superfield. We discuss duality in the case of an axion that has a periodic scalar potential, and find that the bosonic fields of the dual linear multiplet have a modified interpretation. We note that symmetries of the axion potential manifest themselves as symmetries of the equations of motion for the linear multiplet. We also make some brief remarks regarding dilaton stabilization. We point out that corrections recently studied by Dijkgraaf and Vafa can be used to stabilize the axion in the case of a single super-Yang-Mills condensate.Comment: 1+18 pages, 1 figure, comments and references adde
    corecore