28 research outputs found
Defining cell populations with single-cell gene expression profiling: correlations and identification of astrocyte subpopulations
Single-cell gene expression levels show substantial variations among cells in seemingly homogenous populations. Astrocytes perform many control and regulatory functions in the central nervous system. In contrast to neurons, we have limited knowledge about functional diversity of astrocytes and its molecular basis. To study astrocyte heterogeneity and stem/progenitor cell properties of astrocytes, we used single-cell gene expression profiling in primary mouse astrocytes and dissociated mouse neurosphere cells. The transcript number variability for astrocytes showed lognormal features and revealed that cells in primary cultures to a large extent co-express markers of astrocytes and neural stem/progenitor cells. We show how subpopulations of cells can be identified at single-cell level using unsupervised algorithms and that gene correlations can be used to identify differences in activity of important transcriptional pathways. We identified two subpopulations of astrocytes with distinct gene expression profiles. One had an expression profile very similar to that of neurosphere cells, whereas the other showed characteristics of activated astrocytes in vivo
Anthracycline-based consolidation may determine outcome of post-consolidation immunotherapy in AML
Consolidation chemotherapy in acute myeloid leukemia (AML) aims at eradicating residual leukemic cells and mostly comprises high-dose cytarabine with or without the addition of anthracyclines, including daunorubicin. Immunogenic cell death (ICD) may contribute to the efficacy of anthracyclines in solid cancer, but the impact of ICD in AML is only partly explored. We assessed aspects of ICD, as reflected by calreticulin expression, in primary human AML blasts and observed induction of surface calreticulin upon exposure to daunorubicin but not to cytarabine. We next assessed immune phenotypes in AML patients in complete remission (CR), following consolidation chemotherapy with or without anthracyclines. These patients subsequently received immunotherapy with histamine dihydrochloride (HDC) and IL-2. Patients who had received anthracyclines for consolidation showed enhanced frequencies of CD8(+) T-EM cells in blood along with improved survival. We propose that the choice of consolidation therapy prior to AML immunotherapy may determine clinical outcome
Role of regulatory T cells in acute myeloid leukemia patients undergoing relapse-preventive immunotherapy
Regulatory T cells (Tregs) have been proposed to dampen functions of anti-neoplastic immune cells and thus promote cancer progression. In a phase IV trial (Re:Mission Trial, NCT01347996, http://www.clinicaltrials.gov ) 84 patients (age 18-79) with acute myeloid leukemia (AML) in first complete remission (CR) received ten consecutive 3-week cycles of immunotherapy with histamine dihydrochloride (HDC) and low-dose interleukin-2 (IL-2) to prevent relapse of leukemia in the post-consolidation phase. This study aimed at defining the features, function and dynamics of Foxp3+CD25highCD4+ Tregs during immunotherapy and to determine the potential impact of Tregs on relapse risk and survival. We observed a pronounced increase in Treg counts in peripheral blood during initial cycles of HDC/IL-2. The accumulating Tregs resembled thymic-derived natural Tregs (nTregs), showed augmented expression of CTLA-4 and suppressed the cell cycle proliferation of conventional T cells ex vivo. Relapse of AML was not prognosticated by Treg counts at onset of treatment or after the first cycle of immunotherapy. However, the magnitude of Treg induction was diminished in subsequent treatment cycles. Exploratory analyses implied that a reduced expansion of Tregs in later treatment cycles and a short Treg telomere length were significantly associated with a favorable clinical outcome. Our results suggest that immunotherapy with HDC/IL-2 in AML entails induction of immunosuppressive Tregs that may be targeted for improved anti-leukemic efficiency
An Aspergillus nidulans β-mannanase with high transglycosylation capacity revealed through comparative studies within glycosidase family 5.
β-Mannanases are involved in the conversion and modification of mannan-based saccharides. Using a retaining mechanism, they can, in addition to hydrolysis, also potentially perform transglycosylation reactions, synthesizing new glyco-conjugates. Transglycosylation has been reported for β-mannanases in GH5 and GH113. However, although they share the same fold and catalytic mechanism, there may be differences in the enzymes' ability to perform transglycosylation. Three GH5 β-mannanases from Aspergillus nidulans, AnMan5A, AnMan5B and AnMan5C, which belong to subfamily GH5_7 were studied. Comparative studies, including the GH5_7 TrMan5A from Trichoderma reesei, showed some differences between the enzymes. All the enzymes could perform transglycosylation but AnMan5B stood out in generating comparably higher amounts of transglycosylation products when incubated with manno-oligosaccharides. In addition, AnMan5B did not use alcohols as acceptor, which was also different compared to the other three β-mannanases. In order to map the preferred binding of manno-oligosaccharides, incubations were performed in H2 (18)O. AnMan5B in contrary to the other enzymes did not generate any (18)O-labelled products. This further supported the idea that AnMan5B potentially prefers to use saccharides as acceptor instead of water. A homology model of AnMan5B showed a non-conserved Trp located in subsite +2, not present in the other studied enzymes. Strong aglycone binding seems to be important for transglycosylation with saccharides. Depending on the application, it is important to select the right enzyme
Remission maintenance in acute myeloid leukemia: impact of functional histamine H-2 receptors expressed by leukemic cells
Post-consolidation immunotherapy with histamine dihydrochloride and interleukin-2 has been shown to improve leukemia-free survival in acute myeloid leukemia in a phase III trial. For this study, treatment efficacy was determined among 145 trial patients with morphological forms of acute myeloid leukemia as defined by the French-American-British classification. Leukemia-free survival was strongly improved in M4/M5 (myelomonocytic/monocytic) leukemia but not in M2 (myeloblastic) leukemia. We also analyzed histamine H-2 receptor expression by leukemic cells recovered from 26 newly diagnosed patients. H-2 receptors were typically absent from M2 cells but frequently expressed by M4/M5 cells. M4/M5 cells, but not M2 cells, produced reactive oxygen species that triggered apoptosis in adjacent natural killer cells. These events were significantly inhibited by histamine dihydrochloride. Our data demonstrate the presence of functional histamine H2 receptors on human AML cells and suggest that expression of these receptors by leukemic cells may impact on the effectiveness of histamine-based immunotherapy
Clinical significance of IgM and IgA class anti-NMDAR antibodies in herpes simplex encephalitis
Background: Herpes simplex encephalitis (HSE) is a devastating disease, often leaving patients with severe disabilities. It has been shown that IgG anti-N-methyl-D-aspartate receptor (NMDAR) antibodies appear in approximately 25% of HSE patients and could be associated with impaired recovery of cognitive performance. Objectives: To characterize the prevalence of IgM and IgA anti-NMDAR antibodies in HSE patients, in relation to subsequent development of IgG anti-NMDAR and correlation to cognitive performance. Study design: A total of 48 subjects were included from a previously described cohort of patients with HSE verified by HSV-1 PCR. Cerebrospinal fluid (CSF) and serum samples drawn close to onset of disease, after 14–21 days of iv aciclovir treatment and after 90 days of follow-up, were analyzed for the presence of IgM and IgA anti-NMDAR, and related to IgG anti-NMDAR. Antibody levels were correlated to the recovery of cognitive performance, as estimated by the Mattis Dementia Rating Scale (MDRS), for a total of 24 months. Results: In total, 27 of 48 (56%) study subjects were anti-NMDAR positive, defined as the presence of IgG (12/48, 25%), IgM (14/48, 29%) or IgA (13/48, 27%) antibodies in CSF and/or serum. IgM or IgA anti-NMDAR did not predict subsequent IgG autoimmunization and did not correlate to cognitive outcome. IgG anti-NMDAR serostatus, but not antibody titers, correlated to impaired recovery of cognitive performance. Conclusions: A majority of HSE patients develop IgG, IgM or IgA anti-NMDAR antibodies. However, the predictive value and clinical relevance of non-IgG isotypes remains to be shown in this setting
NK cell expression of natural cytotoxicity receptors may determine relapse risk in older AML patients undergoing immunotherapy for remission maintenance
In a phase IV trial, eighty-four patients (age 18-79) with acute myeloid leukemia (AML) in first complete remission (CR) received cycles of immunotherapy with histamine dihydrochloride (HDC) and low-dose human recombinant interleukin-2 (IL-2) to prevent relapse in the post-consolidation phase. Aspects of natural killer (NK) cell biology were analyzed before and during immunotherapy with focus on outcome in older patients. In younger (60 years old, n = 47), treatment with HDC/IL-2 resulted in an expansion of CD56bright and CD16+ NK cells in blood along with an increased NK cell expression of the natural cytotoxicity receptors (NCR) NKp30 and NKp46. In older patients, a high expression of NKp30 or NKp46 on CD16+ NK cells before and during therapy predicted leukemia-free and overall survival. These results suggest that NK cell functions determine relapse risk and survival in older AML patients and point to biomarkers of efficacy in protocols for remission maintenance
Role of natural killer cell subsets and natural cytotoxicity receptors for the outcome of immunotherapy in acute myeloid leukemia.
In a phase IV trial, 84 patients (age 18-79) with acute myeloid leukemia (AML) in first complete remission (CR) received cycles of immunotherapy with histamine dihydrochloride (HDC) and low-dose human recombinant interleukin 2 (IL-2) for 18 months to prevent leukemic relapse. During cycles, the treatment resulted in expansion of CD56(bright) (CD3(-)/16(-)/56(bright)) and CD16(+) (CD3(-)/16(+)/56(+)) natural killer (NK) cells in the blood along with increased NK cell expression of the natural cytotoxicity receptors (NCRs) NKp30 and NKp46. Multivariate analyses correcting for age and risk group demonstrated that high CD56(bright) NK cell counts and high expression of NKp30 or NKp46 on CD16(+) NK cells independently predicted leukemia-free survival (LFS) and overall survival (OS). Our results suggest that the dynamics of NK cell subsets and their NCR expression may determine the efficiency of relapse-preventive immunotherapy in AML