4 research outputs found

    Assessment of Ocriplasmin Effects on the Vitreoretinal Compartment in Porcine and Human Model Systems

    No full text
    Ocriplasmin (Jetrea®) is a recombinant protease used to treat vitreomacular traction. To gain insight into vitreoretinal observations reported after ocriplasmin treatment, we have developed an in vivo porcine ocriplasmin-induced posterior vitreous detachment (PVD) model in which we investigated vitreoretinal tissues by optical coherence tomography, histology, and cytokine profiling. Eight weeks postinjection, ocriplasmin yielded PVD in 82% of eyes. Subretinal fluid (85%) and vitreous hyperreflective spots (45%) were resolved by week 3. Histological analysis of extracellular matrix (ECM) proteins such as laminin, fibronectin, and collagen IV indicated no retinal ocriplasmin-induced ECM distribution changes. Retinal morphology was unaffected in all eyes. Cytokine profiles of ocriplasmin-treated eyes were not different from vehicle. In cell-based electrical resistance assays, blood-retinal barrier permeability was altered by ocriplasmin concentrations of 6 μg/mL and higher, with all effects being nontoxic, cell-type specific, and reversible. Ocriplasmin was actively taken up by RPE and Müller cells, and our data suggest both lysosomal and transcellular clearance routes for ocriplasmin. In conclusion, transient hyperreflective spots and fluid in a porcine ocriplasmin-induced PVD model did not correlate with retinal ECM rearrangement nor inflammation. Reversible in vitro effects on blood-retinal barrier permeability provide grounds for a hypothesis on the mechanisms behind transient subretinal fluid observed in ocriplasmin-treated patients

    Microarray analyses of the effects of NF-kappaB or PI3K pathway inhibitors on the LPS-induced gene expression profile in RAW264.7 cells: synergistic effects of rapamycin on LPS-induced MMP9-overexpression.

    Full text link
    Lipopolysaccharide (LPS) activates a broad range of signalling pathways including mainly NF-kappaB and the MAPK cascade, but recent evidence suggests that LPS stimulation also activates the PI3K pathway. To unravel the specific roles of both pathways in LPS signalling and gene expression profiling, we investigated the effects of different inhibitors of NF-kappaB (BAY 11-7082), PI3K (wortmannin and LY294002) but also of mTOR (rapamycin), a kinase acting downstream of PI3K/Akt, in LPS-stimulated RAW264.7 macrophages, analyzing their effects on the LPS-induced gene expression profile using a low density DNA microarray designed to monitor the expression of pro-inflammatory genes. After statistical and hierarchical cluster analyses, we determined five clusters of genes differentially affected by the four inhibitors used. In the fifth cluster corresponding to genes upregulated by LPS and mainly affected by BAY 11-7082, the gene encoding MMP9 displayed a particular expression profile, since rapamycin drastically enhanced the LPS-induced upregulation at both the mRNA and protein levels. Rapamycin also enhanced the LPS-induced NF-kappaB transactivation as determined by a reporter assay, phosphorylation of the p38 and Erk1/2 MAPKs, and counteracted PPAR activity. These results suggest that mTOR could negatively regulate the effects of LPS on the NF-kappaB and MAPK pathways. We also performed real-time RT-PCR assays on mmp9 expression using rosiglitazone (agonist of PPARgamma), PD98059 (inhibitor of Erk 1/2) and SB203580 (inhibitor of p38(MAPK)), that were able to counteract the rapamycin mediated overexpression of mmp9 in response to LPS. Our results suggest a new pathway involving mTOR for regulating specifically mmp9 in LPS-stimulated RAW264.7 cells
    corecore