20 research outputs found

    Investigation of DC magnetron-sputtered TiO2 coatings: Effect of coating thickness, structure, and morphology on photocatalytic activity

    Get PDF
    The photocatalytic performance of magnetron-sputtered titanium dioxide (TiO2) coatings of different thickness in anatase crystalline structure deposited on aluminium 1050 alloy substrates was investigated using a combination of photo-electrochemistry, methylene blue decomposition, and microscopic and spectroscopic methods, such as high resolution scanning and transmission electron microscopy, atomic force microscopy and ellipsometry. The reaction resistance was measured by AC impedance, while photocurrent measurements were carried out using the zero resistance ammetry (ZRA) method. The results showed that the TiO2 grains grow in dipyramidal columns having a linear increase in surface area with increased coating thickness. The refractive index values indicate also an evolutionary growth.The refractive index values obtained for the thin coatings on aluminium substrate were well below the values reported for monocrystalline anatase. The photocatalytic performance increased with increased coating thickness, though more rapidly over a range of 100 - 500 nm thickness. The dielectric constant also increased linearly with coating thickness.<br/

    Third-order optical nonlinearity properties of CdCl2-modifed Ge–Sb–S chalcogenide glasses

    Get PDF
    We developed a new type of chalcohalide glasses with physicochemical and nonlinear optical properties that are tunable by composition. It is found that more than 60 mol.% CdCl2 heavy metal halide can be dissolved into the ternary Ge–Sb–S system and forming stable glasses. The visible-light transparency range is extended to shorter wavelengths with the addition of CdCl2, which is beneficial for the optical quality control and infra-red (IR) system alignment. The third-order optical nonlinearity (TONL) is studied using the femtosecond Z-scan method. The results show that both the nonlinear refractive index and two photon absorption co-efficient decrease with CdCl2. Benefiting from the favorable property-tailoring effects of CdCl2, the TONL figure of merit (FOM) can be improved to meet the requirement (FOM \u3c 1) for all-optical switching and IR photonic applications

    Magnetocaloric and Giant Magnetoresistance Effects in La-Ba-Mn-Ti-O Epitaxial Thin Films: Influence of Phase Transition and Magnetic Anisotropy

    No full text
    Magnetic perovskite films have promising properties for use in energy-efficient spintronic devices and magnetic refrigeration. Here, an epitaxial ferromagnetic La0.67Ba0.33Mn0.95Ti0.05O3 (LBMTO-5) thin film was grown on SrTiO3(001) single crystal substrate by pulsed laser deposition. High-resolution X-ray diffraction proved the high crystallinity of the film with tetragonal symmetry. The magnetic, magnetocaloric and magnetoresistance properties at different directions of the applied magnetic field with respect to the ab plane of the film were investigated. An in-plane uni-axial magnetic anisotropy was evidenced. The LBMTO-5 epilayer exhibits a second-order ferromagnetic-paramagnetic phase transition around 234 K together with a metal&ndash;semiconductor transition close to this Curie temperature (TC). The magnetic entropy variation under 5 T induction of a magnetic field applied parallel to the film surface reaches a maximum of 17.27 mJ/cm3 K. The relative cooling power is 1400 mJ/cm3 K (53% of the reference value reported for bulk Gd) for the same applied magnetic field. Giant magnetoresistance of about 82% under 5 T is obtained at a temperature close to TC. Defined as the difference between specific resistivity obtained under 5 T with the current flowing along the magnetic easy axis and the magnetic field oriented transversally to the current, parallel and perpendicular to the sample plane, respectively, the in-plane magneto-resistance anisotropy in 5 T is about 9% near the TC

    Molarity Dependent on CVD Misted ZnS Buffer Layer Performance

    Get PDF
    This paper manifests the synthesis and characterization of zinc sulfur (ZnS) thin films combined with numerical simulation (SCAPS-1D). The synthesis has been done by mixing and depositing Zn and S precursors on a preheated glass substrate (450 °C) with different molar concentrations. X-ray diffraction (XRD) shows the formation of polycrystalline ZnS with a mixed hexagonal/cubic structure. Raman spectroscopy analysis validates the films purity with a predominant peak at 348 cm-1 corresponding to the cubic structure. Composition elements and atomic ratio have been confirmed by the energy dispersive X-ray analysis (EDX). Scanning electronic microscopy (SEM) and atomic force microscopy (AFM) images show uniform and well-arranged spherical grains on the samples surface with a non-neglected roughness variation. The optical results show high transparency in the visual field of light (≃80%) and a sharp absorption edge in the UV domain. The optical band gap has been considerably decreased with increasing the concentrations reflecting its high dependency on the molarity rate. Numerical modeling results using SCAPS-1D software show that samples corresponding to 0.06 and 0.08 molarity present better performance with an efficiency of 8.94% and 8.9%, respectively

    Graphene Oxide Concentration Effect on the Optoelectronic Properties of ZnO/GO Nanocomposites

    No full text
    In this work, the effects of graphene oxide (GO) concentrations (1.5 wt.%, 2.5 wt.%, and 5 wt.%) on the structural, morphological, optical, and luminescence properties of zinc oxide nanorods (ZnO NRs)/GO nanocomposites, synthesized by a facile hydrothermal process, were investigated. X-ray diffraction (XRD) patterns of NRs revealed the hexagonal wurtzite structure for all composites with an average coherence length of about 40&ndash;60 nm. A scanning electron microscopy (SEM) study confirmed the presence of transparent and wrinkled, dense GO nanosheets among flower-like ZnO nanorods, depending on the GO amounts used in preparation. Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), ultraviolet&ndash;visible (UV&ndash;Vis) absorption spectroscopy, and photoluminescence (PL) measurements revealed the impact of GO concentration on the optical and luminescence properties of ZnO NRs/GO nanocomposites. The energy band gap of the ZnO nanorods was independent of GO concentration. Photoluminescence spectra of nanocomposites showed a significant decrease in the intensities in the visible light range and red shifted suggesting a charge transfer process. The nanocomposites&rsquo; chromaticity coordinates for CIE 1931 color space were estimated to be (0.33, 0.34), close to pure white ones. The obtained results highlight the possibility of using these nanocomposites to achieve good performance and suitability for optoelectronic applications

    The Effect of the Deposition Method on the Structural and Optical Properties of ZnS Thin Films

    No full text
    ZnS is a wide band gap material which was proposed as a possible candidate to replace CdS as a buffer layer in solar cells. However, the structural and optical properties are influenced by the deposition method. ZnS thin films were prepared using magnetron sputtering (MS), pulsed laser deposition (PLD), and a combined deposition technique that uses the same bulk target for sputtering and PLD at the same time, named MSPLD. The compositional, structural, and optical properties of the as-deposited and annealed films were inferred from Rutherford backscattering spectrometry, X-ray diffraction, X-ray reflectometry, Raman spectroscopy, and spectroscopic ellipsometry. PLD leads to the best stoichiometric transfer from target to substrate, MS makes fully amorphous films, whereas MSPLD facilitates obtaining the densest films. The study reveals that the band gap is only slightly influenced by the deposition method, or by annealing, which is encouraging for photovoltaic applications. However, sulphur vacancies contribute to lowering the bandgap and therefore should be controlled. Moreover, the results add valuable information towards the understanding of ZnS polymorphism. The combined MSPLD method offers several advantages such as an increased deposition rate and the possibility to tune the optical properties of the obtained thin films

    Tuning the infrared resonance of thermal emission from metasurfaces working in near-infrared

    No full text
    Abstract We simulated numerically and demonstrated experimentally that the thermal emittance of a metasurface consisting of an array of rectangular metallic meta-atoms patterned on a layered periodic dielectric structure grown on top of a metallic layer can be tuned by changing several parameters. The resonance frequency, designed to be in the near-infrared spectral region, can be tuned by modifying the number of dielectric periods, and the polarization and incidence angle of the incoming radiation. In addition, the absorbance/emittance value at the resonant wavelength can be tuned by modifying the orientation of meta-atoms with respect to the illumination direction

    Partial Replacement of Dimethylformamide with Less Toxic Solvents in the Fabrication Process of Mixed-Halide Perovskite Films

    No full text
    The technology of perovskite solar cells (PSC) is getting close to breaching the consumer market. Yet, one of the current challenges is to reduce the toxicity during their fabrication by reducing the use of the toxic solvents involved in the perovskite fabrication process. A good solubilization of lead halides used in hybrid perovskite preparation is required, and it is only possible with polar solvents. A mixture of dimethylformamide (DMF) and dimethyl sulfoxide (DMSO) is the most popular solvent combination for a perovskite precursor solution. DMF is necessary to ensure a good dissolution of lead iodide, but it is also the most toxic solvent. In this paper, we study the replacement of the dimethylformamide with presumably less toxic alternatives, such as N-methyl-2-Pyrrolidone (NMP) and ethyl acetate (EA), for the preparation of the K0.1FA0.7MA0.2PbI2.8Cl0.2 (KFAMA) hybrid perovskite. The perovskite thin films were investigated by various characterization techniques: X-ray diffraction, atomic force microscopy, scanning electron microscopy, and UV&ndash;vis spectroscopy, while the photovoltaic parameters were determined by measuring the IV curves of the corresponding solar cells. The present study shows that by keeping the same deposition parameters as when only DMF solvent is used, the partial solvent substitution with NMP and EA gives promising results for reducing the toxicity of the fabrication process of KFAMA-based PSCs. Thus, with no specific optimization of the deposition process, and for the maximum possible partial substitution of DMF with NMP and EA solvents, the loss in the power conversion efficiency (PCE) value is only 35% and 18%, respectively, associated with the more structural defects promoted by NMP and EA
    corecore