13 research outputs found
A Non-isothermal Theory for Interpreting Sodium Lines in Transmission Spectra of Exoplanets
We present a theory for interpreting the sodium lines detected in
transmission spectra of exoplanetary atmospheres. Previous analyses employed
the isothermal approximation and dealt only with the transit radius. By
recognising the absorption depth and the transit radius as being independent
observables, we develop a theory for jointly interpreting both quantities,
which allows us to infer the temperatures and number densities associated with
the sodium lines. We are able to treat a non-isothermal situation with a
constant temperature gradient. Our novel diagnostics take the form of
simple-to-use algebraic formulae and require measurements of the transit radii
(and their corresponding absorption depths) at line center and in the line wing
for both sodium lines. We apply our diagnostics to the HARPS data of HD
189733b, confirm the upper atmospheric heating reported by Huitson et al.
(2012), derive a temperature gradient of K km and
find densities to cm.Comment: Accepted by ApJ Letters. 6 pages, 3 figure
Transmission spectroscopy of the ultra-hot Jupiter MASCARA-4 b: Disentangling the hydrostatic and exospheric regimes of ultra-hot Jupiters
Ultra-hot Jupiters (UHJs), rendering the hottest planetary atmospheres, offer
great opportunities of detailed characterisation with high-resolution
spectroscopy. MASCARA-4 b is a recently discovered close-in gas giant belonging
to this category. In order to refine system and planet parameters, we carried
out radial velocity measurements and transit photometry with the CORALIE
spectrograph and EulerCam at the Swiss 1.2m Euler telescope. We observed two
transits of MASCARA-4 b with the high-resolution spectrograph ESPRESSO at ESO's
Very Large Telescope. We searched for atomic, ionic, and molecular species via
individual absorption lines and cross-correlation techniques. These results are
compared to literature studies on UHJs characterised to date. With CORALIE and
EulerCam observations, we updated the mass of MASCARA-4 b (1.675 +/- 0.241
Jupiter masses) as well as other system and planet parameters. In the
transmission spectrum derived from ESPRESSO observations, we resolve excess
absorption by H, H, Na D1 & D2, Ca+ H & K, and a few strong
individual lines of Mg, Fe and Fe+. We also present the cross-correlation
detection of Mg, Ca, Cr, Fe and Fe+. The absorption strength of Fe+
significantly exceeds the prediction from a hydrostatic atmospheric model, as
commonly observed in other UHJs. We attribute this to the presence of Fe+ in
the exosphere due to hydrodynamic outflows. This is further supported by the
positive correlation of absorption strengths of Fe+ with the H line.
Comparing transmission signatures of various species in the UHJ population
allows us to disentangle the hydrostatic regime (as traced via the absorption
by Mg and Fe) from the exospheres (as probed by H and Fe+) of the
strongly irradiated atmospheres.Comment: 13 pages, 9 figures, accepted to A&
The Multiplanet System TOI-421: A Warm Neptune and a Super Puffy Mini-Neptune Transiting a G9 V Star in a Visual Binary
We report the discovery of a warm Neptune and a hot sub-Neptune transiting TOI-421 (BD-14 1137, TIC 94986319), a bright (V = 9.9) G9 dwarf star in a visual binary system observed by the Transiting Exoplanet Survey Satellite (TESS) space mission in Sectors 5 and 6. We performed ground-based follow-up observations—comprised of Las Cumbres Observatory Global Telescope transit photometry, NIRC2 adaptive optics imaging, and FIbre-fed Echellé Spectrograph, CORALIE, High Accuracy Radial velocity Planet Searcher, High Resolution Échelle Spectrometer, and Planet Finder Spectrograph high-precision Doppler measurements—and confirmed the planetary nature of the 16 day transiting candidate announced by the TESS team. We discovered an additional radial velocity signal with a period of five days induced by the presence of a second planet in the system, which we also found to transit its host star. We found that the inner mini-Neptune, TOI-421 b, has an orbital period of P_b = 5.19672 ± 0.00049 days, a mass of M_b = 7.17 ± 0.66 M⊕, and a radius of R_b = 2.68^(+0.19)_(-0.18) R⊕, whereas the outer warm Neptune, TOI-421 c, has a period of Pc = 16.06819 ± 0.00035 days, a mass of M_c = 16.42^(+1.06)_(-1.04) M⊕, a radius of R_c = 5.09^(+0.16)_(-0.15) R⊕ and a density of ρ_c = 0.685^(+0.080)_(-0.072) g cm⁻³. With its characteristics, the outer planet (ρ_c = 0.685^(+0.080)_(-0.072) g cm⁻³) is placed in the intriguing class of the super-puffy mini-Neptunes. TOI-421 b and TOI-421 c are found to be well-suited for atmospheric characterization. Our atmospheric simulations predict significant Lyα transit absorption, due to strong hydrogen escape in both planets, as well as the presence of detectable CH4 in the atmosphere of TOI-421 c if equilibrium chemistry is assumed
Observations d'atmosphères exoplanétaires par spectroscopie de transmission à haute résolution
Des planètes extrasolaires (exoplanètes) sont découvertes chaque année. Ma thèse de doctorat se situe dans le domaine des atmosphères des exoplanètes. Un des moyens pour l'étude de celles-ci est la spectroscopie de transmission. Cette technique étudie la lumière filtrée par l'atmosphère d'une exoplanète, alors que celle-ci passe devant son étoile (transit). Durant ma thèse, j'ai exploré la possibilité d'utiliser HARPS, un spectrographe à haute résolution, à cet effet. Mon travail a posé les jalons pour une utilisation sans précédent de cet instrument. Il a permis de mesurer, avec un télescope de taille moyenne, des spectres de transmission à haute résolution de Jupiter chauds. Mes études des raies du sodium dans les atmosphères de HD189733b et WASP-49b ont révélé de nouvelles informations sur leur thermosphère. Des mesures originales de températures et de vents dans ces régions complètent les observations faites à d'autres longueurs d'onde ou à d'autres résolutions
Combining low- to high-resolution transit spectroscopy of HD 189733b
Space-borne low- to medium-resolution (ℛ ~ 10²–10³) and ground-based high-resolution spectrographs (ℛ ~ 10⁵) are commonly used to obtain optical and near infrared transmission spectra of exoplanetary atmospheres. In this wavelength range, space-borne observations detect the broadest spectral features (alkali doublets, molecular bands, scattering, etc.), while high-resolution, ground-based observations probe the sharpest features (cores of the alkali lines, molecular lines). The two techniques differ by several aspects. (1) The line spread function of ground-based observations is ~10³ times narrower than for space-borne observations; (2) Space-borne transmission spectra probe up to the base of thermosphere (P ≳ 10⁻⁶ bar), while ground-based observations can reach lower pressures (down to ~10⁻¹¹ bar) thanks to their high resolution; (3) Space-borne observations directly yield the transit depth of the planet, while ground-based observations can only measure differences in the apparent size of the planet at different wavelengths. These differences make it challenging to combine both techniques. Here, we develop a robust method to compare theoretical models with observations at different resolutions. We introduce πη, a line-by-line 1D radiative transfer code to compute theoretical transmission spectra over a broad wavelength range at very high resolution (ℛ ~ 10⁶, or Δλ ~ 0.01 Å). An hybrid forward modeling/retrieval optimization scheme is devised to deal with the large computational resources required by modeling a broad wavelength range ~0.3–2 μm at high resolution. We apply our technique to HD 189733b. In this planet, HST observations reveal a flattened spectrum due to scattering by aerosols, while high-resolution ground-based HARPS observations reveal sharp features corresponding to the cores of sodium lines. We reconcile these apparent contrasting results by building models that reproduce simultaneously both data sets, from the troposphere to the thermosphere. We confirm: (1) the presence of scattering by tropospheric aerosols; (2) that the sodium core feature is of thermospheric origin. When we take into account the presence of aerosols, the large contrast of the core of the sodium lines measured by HARPS indicates a temperature of up to ~10 000K in the thermosphere, higher than what reported in the literature. We also show that the precise value of the thermospheric temperature is degenerate with the relative optical depth of sodium, controlled by its abundance, and of the aerosol deck
A medium-resolution spectrum of the exoplanet HIP 65426 b
21 pages, 16 figures, 3 AppendixMedium-resolution integral-field spectrographs (IFS) coupled with adaptive-optics such as Keck/OSIRIS, VLT/MUSE, or SINFONI are appearing as a new avenue for enhancing the detection and characterization capabilities of young, gas giant exoplanets at large heliocentric distances (>5 au). We analyzed K-band VLT/SINFONI medium-resolution (R_lambda~5577) observations of the young giant exoplanet HIP 65426 b. Our dedicated IFS data analysis toolkit (TExTRIS) optimized the cube building, star registration, and allowed for the extraction of the planet spectrum. A Bayesian inference with the nested sampling algorithm coupled with the self-consistent forward atmospheric models BT-SETTL15 and Exo-REM using the ForMoSA tool yields Teff=1560 +/- 100K, log(g)20 au) by core-accretion. However, a formation by gravitational instability can not be ruled out. The metallicity is compatible with the bulk enrichment of massive Jovian planets from the Bern planet population models. Finally, we measure a radial velocity of 26 +/- 15km/s compatible with our revised measurement on the star. This is the fourth imaged exoplanet for which a radial velocity can be evaluated, illustrating the potential of such observations for assessing the coevolution of imaged systems belonging to star forming regions, such as HIP 65426
A medium-resolution spectrum of the exoplanet HIP 65426 b
21 pages, 16 figures, 3 AppendixMedium-resolution integral-field spectrographs (IFS) coupled with adaptive-optics such as Keck/OSIRIS, VLT/MUSE, or SINFONI are appearing as a new avenue for enhancing the detection and characterization capabilities of young, gas giant exoplanets at large heliocentric distances (>5 au). We analyzed K-band VLT/SINFONI medium-resolution (R_lambda~5577) observations of the young giant exoplanet HIP 65426 b. Our dedicated IFS data analysis toolkit (TExTRIS) optimized the cube building, star registration, and allowed for the extraction of the planet spectrum. A Bayesian inference with the nested sampling algorithm coupled with the self-consistent forward atmospheric models BT-SETTL15 and Exo-REM using the ForMoSA tool yields Teff=1560 +/- 100K, log(g)20 au) by core-accretion. However, a formation by gravitational instability can not be ruled out. The metallicity is compatible with the bulk enrichment of massive Jovian planets from the Bern planet population models. Finally, we measure a radial velocity of 26 +/- 15km/s compatible with our revised measurement on the star. This is the fourth imaged exoplanet for which a radial velocity can be evaluated, illustrating the potential of such observations for assessing the coevolution of imaged systems belonging to star forming regions, such as HIP 65426
Atomic iron and titanium in the atmosphere of the exoplanet KELT-9b
To constrain the formation history of an exoplanet, we need to know its chemical composition. With an equilibrium temperature of about 4,050 kelvin, the exoplanet KELT-9b (also known as HD 195689b) is an archetype of the class of ultrahot Jupiters that straddle the transition between stars and gas-giant exoplanets and are therefore useful for studying atmospheric chemistry. At these high temperatures, iron and several other transition metals are not sequestered in molecules or cloud particles and exist solely in their atomic forms5. However, despite being the most abundant transition metal in nature, iron has not hitherto been detected directly in an exoplanet because it is highly refractory. The high temperatures of KELT-9b imply that its atmosphere is a tightly constrained chemical system that is expected to be nearly in chemical equilibrium and cloud-free, and it has been predicted that spectral lines of iron should be detectable in the visible range of wavelengths. Here we report observations of neutral and singly ionized atomic iron (Fe and Fe⁺) and singly ionized atomic titanium (Ti⁺) in the atmosphere of KELT-9b. We identify these species using cross-correlation analysis of high-resolution spectra obtained as the exoplanet passed in front of its host star. Similar detections of metals in other ultrahot Jupiters will provide constraints for planetary formation theories