2 research outputs found

    Enhanced Cytotoxicity on Cancer Cells by Combinational Treatment of PARP Inhibitor and 5-Azadeoxycytidine Accompanying Distinct Transcriptional Profiles

    No full text
    Poly(ADP-ribose) polymerase (PARP) is involved in DNA repair and chromatin regulation. 5-Aza-2′-deoxycytidine (5-aza-dC) inhibits DNA methyltransferases, induces hypomethylation, blocks DNA replication, and causes DNA single strand breaks (SSBs). As the PARP inhibitor is expected to affect both DNA repair and transcriptional regulations, we investigated the effect of combinational use of PARP inhibitors on cytotoxicity of 5-aza-dC in human cancer cell lines. The combinational treatment of 5-aza-dC and PARP inhibitor PJ-34 exhibited a stronger cytotoxicity compared with their treatment alone in blood cancer HL-60, U937, and colon cancer HCT116 and RKO cells. Treatment with 5-aza-dC but not PJ-34 caused SSBs in HCT116 cell lines. Global genome DNA demethylation was observed after treatment with 5-aza-dC but not with PJ-34. Notably, in microarray analysis, combinational treatment with PJ-34 and 5-aza-dC caused dissimilar broad changes in gene expression profiles compared with their single treatments in both HCT116 and RKO cells. The profiles of reactivation of silenced genes were also different in combination of PJ-34 and 5-aza-dC and their single treatments. The results suggest that the combinational use of 5-aza-dC and PARP inhibitor may be useful by causing distinct transcriptional profile changes

    Radiosensitization to γ-Ray by Functional Inhibition of APOBEC3G

    No full text
    The radiosensitization of tumor cells is one of the promising approaches for enhancing radiation damage to cancer cells and limiting radiation effects on normal tissue. In this study, we performed a comprehensive screening of radiosensitization targets in human lung cancer cell line A549 using an shRNA library and identified apolipoprotein B mRNA editing enzyme catalytic subunit 3G (APOBEC3G: A3G) as a candidate target. APOBEC3G is an innate restriction factor that inhibits HIV-1 infection as a cytidine deaminase. APOBEC3G knockdown with siRNA showed an increased radiosensitivity in several cancer cell lines, including pancreatic cancer MIAPaCa2 cells and lung cancer A549 cells. Cell cycle analysis revealed that APOBEC3G knockdown increased S-phase arrest in MIAPaCa2 and G2/M arrest in A549 cells after γ-irradiation. DNA double-strand break marker γH2AX level was increased in APOBEC3G-knocked-down MIAPaCa2 cells after γ-irradiation. Using a xenograft model of A549 in mice, enhanced radiosensitivity by a combination of X-ray irradiation and APOBEC3G knockdown was observed. These results suggest that the functional inhibition of APOBEC3G sensitizes cancer cells to radiation by attenuating the activation of the DNA repair pathway, suggesting that APOBEC3G could be useful as a target for the radiosensitization of cancer therapy
    corecore