3 research outputs found

    Evaluation of calibration techniques in low-cost air quality sensing

    Get PDF
    Air pollution is considered to be one of the biggest environmental risks to health, causing symptoms from headache to lung diseases, cardiovascular diseases and cancer. To improve awareness of pollutants, air quality needs to be measured more densely. Low-cost air quality sensors offer one solution to increase the number of air quality monitors. However, they suffer from low accuracy of measurements compared to professional-grade monitoring stations. This thesis applies machine learning techniques to calibrate the values of a low-cost air quality sensor against a reference monitoring station. The calibrated values are then compared to a reference station’s values to compute error after calibration. In the past, the evaluation phase has been carried out very lightly. A novel method of selecting data is presented in this thesis to ensure diverse conditions in training and evaluation data, that would yield a more realistic impression about the capabilities of a calibration model. To better understand the level of performance, selected calibration models were trained with data corresponding to different levels of air pollution and meteorological conditions. Regarding pollution level, using homogeneous training and evaluation data, the error of a calibration model was found to be even 85% lower than when using diverse training and evaluation pollution environment. Also, using diverse meteorological training data instead of more homogeneous data was shown to reduce the size of the error and provide stability on the behavior of calibration models

    Transit Pollution Exposure Monitoring using Low-Cost Wearable Sensors

    Get PDF
    Transit activities are a significant contributor to a person's daily exposure to pollutants. Currently obtaining accurate information about the personal exposure of a commuter is challenging as existing solutions either have a coarse monitoring resolution that omits subtle variations in pollutant concentrations or are laborious and costly to use. We contribute by systematically analysing the feasibility of using wearable low-cost pollution sensors for capturing the total exposure of commuters. Through extensive experiments carried out in the Helsinki metropolitan region, we demonstrate that low-cost sensors can capture the overall exposure with sufficient accuracy, while at the same time providing insights into variations within transport modalities. We also demonstrate that wearable sensors can capture subtle variations caused by differing routes, passenger density, location within a carriage, and other factors. For example, we demonstrate that location within the vehicle carriage can result in up to 25% increase in daily pollution exposure -- a significant difference that existing solutions are unable to capture. Finally, we highlight the practical benefits of low-cost sensors as a pollution monitoring solution by introducing applications that are enabled by low-cost wearable sensors.Peer reviewe
    corecore