12 research outputs found
Clues for a standardised thermal-optical protocol for the assessment of organic and elemental carbon within ambient air particulate matter
Along with some research networking programmes, the European Directive
2008/50/CE requires chemical speciation of fine aerosol (PM<sub>2.5</sub>),
including elemental (EC) and organic carbon (OC), at a few rural sites in
European countries. Meanwhile, the thermal-optical technique is considered by
the European and US networking agencies and normalisation bodies as a
reference method to quantify ECâOC collected on filters. Although commonly
used for many years, this technique still suffers from a lack of
information on the comparability of the different analytical protocols
(temperature protocols, type of optical correction) currently applied in the
laboratories. To better evaluate the ECâOC data set quality and related
uncertainties, the French National Reference Laboratory for Ambient Air
Quality Monitoring (LCSQA) organised an ECâOC comparison exercise for
French laboratories using different thermal-optical methods (five laboratories
only). While there is good agreement on total carbon (TC) measurements among
all participants, some differences can be observed on the EC / TC ratio, even
among laboratories using the same thermal protocol. These results led to
further tests on the influence of the optical correction: results obtained
from different European laboratories confirmed that there were higher
differences between OC<sub>TOT</sub> and OC<sub>TOR</sub> measured with
NIOSH 5040 in comparison to EUSAAR-2. Also, striking differences between
EC<sub>TOT</sub> / EC<sub>TOR</sub> ratios can be observed when comparing
results obtained for rural and urban samples, with EC<sub>TOT</sub> being
50% lower than EC<sub>TOR</sub> at rural sites whereas it is only
20% lower at urban sites. The PM chemical composition could explain
these differences but the way it influences the ECâOC measurement is not
clear and needs further investigation. Meanwhile, some additional tests seem
to indicate an influence of oven soiling on the ECâOC measurement data
quality. This highlights the necessity to follow the laser signal decrease
with time and its impact on measurements. Nevertheless, this should be
confirmed by further experiments, involving more samples and various
instruments, to enable statistical processing. All these results provide
insights to determine the quality of ECâOC analytical methods and may
contribute to the work toward establishing method standardisation
First French Intercomparison Exercises for Air Quality sensors (EAÎŒC) : results and assessment
International audienc
A selective inhibitor of the immunoproteasome subunit LMP7 blocks cytokine production and attenuates progression of experimental arthritis
The immunoproteasome, a distinct class of proteasome found predominantly in monocytes and lymphocytes, is known to shape the antigenic repertoire presented on class I major histocompatibility complexes (MHC-I). However, a specific role for the immunoproteasome in regulating other facets of immune responses has not been established. We describe here the characterization of PR-957, a selective inhibitor of low-molecular mass polypeptide-7 (LMP7, encoded by Psmb8), the chymotrypsin-like subunit of the immunoproteasome. PR-957 blocked presentation of LMP7-specific, MHC-I-restricted antigens in vitro and in vivo. Selective inhibition of LMP7 by PR-957 blocked production of interleukin-23 (IL-23) by activated monocytes and interferon-gamma and IL-2 by T cells. In mouse models of rheumatoid arthritis, PR-957 treatment reversed signs of disease and resulted in reductions in cellular infiltration, cytokine production and autoantibody levels. These studies reveal a unique role for LMP7 in controlling pathogenic immune responses and provide a therapeutic rationale for targeting LMP7 in autoimmune disorders
Synthesis and Biological Investigation of Î<sup>12</sup>-Prostaglandin J<sub>3</sub> (Î<sup>12</sup>-PGJ<sub>3</sub>) Analogues and Related Compounds
A series of Î<sup>12</sup>-prostaglandin
J<sub>3</sub> (Î<sup>12</sup>-PGJ<sub>3</sub>) analogues and
derivatives were synthesized
employing an array of synthetic strategies developed specifically
to render them readily available for biological investigations. The
synthesized compounds were evaluated for their cytotoxicity against
a number of cancer cell lines, revealing nanomolar potencies for a
number of them against certain cancer cell lines. Four analogues (<b>2</b>, <b>11</b>, <b>21</b>, and <b>27</b>)
demonstrated inhibition of nuclear export through a covalent addition
at Cys528 of the export receptor Crm1. One of these compounds (i.e., <b>11</b>) is currently under evaluation as a potential drug candidate
for the treatment of certain types of cancer. These studies culminated
in useful and path-pointing structureâactivity relationships
(SARs) that provide guidance for further improvements in the biological/pharmacological
profiles of compounds within this class