10 research outputs found

    Influence of asymmetry and nodal planes on high-harmonic generation in heteronuclear molecules

    Full text link
    The relation between high-harmonic spectra and the geometry of the molecular orbitals in position and momentum space is investigated. In particular we choose two isoelectronic pairs of homonuclear and heteronuclear molecules, such that the highest occupied molecular orbital of the former exhibit at least one nodal plane. The imprint of such planes is a strong suppression in the harmonic spectra, for particular alignment angles. We are able to identify two distinct types of nodal planes. If the nodal planes are determined by the atomic wavefunctions only, the angle for which the yield is suppressed will remain the same for both types of molecules. In contrast, if they are determined by the linear combination of atomic orbitals at different centers in the molecule, there will be a shift in the angle at which the suppression occurs for the heteronuclear molecules, with regard to their homonuclear counterpart. This shows that, in principle, molecular imaging, which uses the homonuclear molecule as a reference and enables one to observe the wavefunction distortions in its heteronuclear counterpart, is possible.Comment: 14 pages, 7 figures. Figs. 3, 5 and 6 have been simplified in order to comply with the arXiv size requirement

    Excitation, two-center interference and the orbital geometry in laser-induced nonsequential double ionization of diatomic molecules

    Full text link
    We address the influence of the molecular orbital geometry and of the molecular alignment with respect to the laser-field polarization on laser-induced nonsequential double ionization of diatomic molecules for different molecular species, namely N2\mathrm{N}_2 and Li2\mathrm{Li}_2. We focus on the recollision excitation with subsequent tunneling ionization (RESI) mechanism, in which the first electron, upon return, promotes the second electron to an excited state, from where it subsequently tunnels. We show that the electron-momentum distributions exhibit interference maxima and minima due to the electron emission at spatially separated centers. We provide generalized analytical expressions for such maxima or minima, which take into account ss pp mixing and the orbital geometry. The patterns caused by the two-center interference are sharpest for vanishing alignment angle and get washed out as this parameter increases. Apart from that, there exist features due to the geometry of the lowest occupied molecular orbital (LUMO), which may be observed for a wide range of alignment angles. Such features manifest themselves as the suppression of probability density in specific momentum regions due to the shape of the LUMO wavefunction, or as an overall decrease in the RESI yield due to the presence of nodal planes.Comment: 11 pages revtex, 2 figure

    Local dynamics in high-order harmonic generation using Bohmian trajectories

    Full text link
    We investigate high-order harmonic generation from a Bohmian-mechanical perspective, and find that the innermost part of the core, represented by a single Bohmian trajectory, leads to the main contributions to the high-harmonic spectra. Using time-frequency analysis, we associate this central Bohmian trajectory to an ensemble of unbound classical trajectories leaving and returning to the core, in agreement with the three step model. In the Bohmian scenario, this physical picture builds up non-locally near the core via the quantum mechanical phase of the wavefunction. This implies that the flow of the wavefunction far from the core alters the central Bohmian trajectory. We also show how this phase degrades in time for the peripheral Bohmian trajectories as they leave the core region.Comment: 7 pages, 3 figures; the manuscript has been considerably extended and modified with regard to the previous version

    Forward and hybrid path-integral methods in photoelectron holography: sub-barrier corrections, initial sampling and momentum mapping

    Full text link
    We construct two strong-field path integral methods with full Coulomb distortion, in which the quantum pathways are mimicked by interfering electron orbits: the rate-based CQSFA (R-CQSFA) and the hybrid forward-boundary CQSFA (H-CQSFA). The methods have the same starting point as the standard Coulomb quantum-orbit strong-field approximation (CQSFA), but their implementation does not require pre-knowledge of the orbits' dynamics. These methods are applied to ultrafast photoelectron holography. In the rate-based method, electron orbits are forward propagated and we derive a non-adiabatic ionization rate from the CQSFA, which includes sub-barrier Coulomb corrections and is used to weight the initial orbit ensemble. In the H-CQSFA, the initial ensemble provides initial guesses for a subsequent boundary problem and serves to include or exclude specific momentum regions, but the ionization probabilities associated with individual trajectories are computed from sub-barrier complex integrals. We perform comparisons with the standard CQSFA and \textit{ab-initio} methods, which show that the standard, purely boundary-type implementation of the CQSFA leaves out whole sets of trajectories. We show that the sub-barrier Coulomb corrections broaden the resulting photoelectron momentum distributions (PMDs) and improve the agreement of the R-CQSFA with the H-CQSFA and other approaches. We probe different initial sampling distributions, uniform and otherwise, and their influence on the PMDs. We find that initial biased sampling emphasizes rescattering ridges and interference patterns in high-energy ranges, while an initial uniform sampling guarantees accurate modeling of the holographic patterns near the ionization threshold or polarization axis. Our results are explained using the initial to final momentum mapping for different types of interfering trajectories.Comment: 25 pages revtex, 14 figures; in the revised version, some explanations have been extended and some figures have been modifie

    Atomic and molecular dynamics triggered by ultrashort light pulses on the atto- to picosecond time scale

    No full text
    corecore