37 research outputs found

    Plasma amino acid levels in cystic fibrosis patients

    Get PDF

    Genetic basis of hyperlysinemia

    Get PDF
    Background: Hyperlysinemia is an autosomal recessive inborn error of L-lysine degradation. To date only one causal mutation in the AASS gene encoding aminoadipic semialdehyde synthase has been reported. We aimed to better define the genetic basis of hyperlysinemia. Methods. We collected the clinical, biochemical and molecular data in a cohort of 8 hyperlysinemia patients with distinct neurological features. Results: We found novel causal mutations in AASS in all affected individuals, including 4 missense mutations, 2 deletions and 1 duplication. In two patients originating from one family, the hyperlysinemia was caused by a contiguous gene deletion syndrome affecting AASS and PTPRZ1. Conclusions: Hyperlysinemia is caused by mutations in AASS. As hyperlysinemia is generally considered a benign metabolic variant, the more severe neurological disease course in two patients with a contiguous deletion syndrome may be explained by the additional loss of PTPRZ1. Our findings illustrate the importance of detailed biochemical and genetic studies in any hyperlysinemia patient

    Consensus recommendations for the diagnosis, treatment and follow-up of inherited methylation disorders

    Get PDF
    Inherited methylation disorders are a group of rarely reported, probably largely underdiagnosed disorders affecting transmethylation processes in the metabolic pathway between methionine and homocysteine. These are methionine adenosyltransferase I/III, glycine N-methyltransferase, S-adenosylhomocysteine hydrolase and adenosine kinase deficiencies. This paper provides the first consensus recommendations for the diagnosis and management of methylation disorders. Following search of the literature and evaluation according to the SIGN-methodology of all reported patients with methylation defects, graded recommendations are provided in a structured way comprising diagnosis (clinical presentation, biochemical abnormalities, differential diagnosis, newborn screening, prenatal diagnosis), therapy and follow-up. Methylation disorders predominantly affect the liver, central nervous system and muscles, but clinical presentation can vary considerably between and within disorders. Although isolated hypermethioninemia is the biochemical hallmark of this group of disorders, it is not always present, especially in early infancy. Plasma S-adenosylmethionine and S-adenosylhomocysteine are key metabolites for the biochemical clarification of isolated hypermethioninemia. Mild hyperhomocysteinemia can be present in all methylation disorders. Methylation disorders do not qualify as primary targets of newborn screening. A low-methionine diet can be beneficial in patients with methionine adenosyltransferase I/III deficiency if plasma methionine concentrations exceed 800 μmol/L. There is some evidence that this diet may also be beneficial in patients with S-adenosylhomocysteine hydrolase and adenosine kinase deficiencies. S-adenosylmethionine supplementation may be useful in patients with methionine adenosyltransferase I/III deficiency. Recommendations given in this article are based on general principles and in practice should be adjusted individually according to patient's age, severity of the disease, clinical and laboratory findings

    Guidelines for diagnosis and management of the cobalamin-related remethylation disorders cblC, cblD, cblE, cblF, cblG, cblJ and MTHFR deficiency

    Get PDF
    BACKGROUND: Remethylation defects are rare inherited disorders in which impaired remethylation of homocysteine to methionine leads to accumulation of homocysteine and perturbation of numerous methylation reactions. OBJECTIVE: To summarise clinical and biochemical characteristics of these severe disorders and to provide guidelines on diagnosis and management. DATA SOURCES: Review, evaluation and discussion of the medical literature (Medline, Cochrane databases) by a panel of experts on these rare diseases following the GRADE approach. KEY RECOMMENDATIONS: We strongly recommend measuring plasma total homocysteine in any patient presenting with the combination of neurological and/or visual and/or haematological symptoms, subacute spinal cord degeneration, atypical haemolytic uraemic syndrome or unexplained vascular thrombosis. We strongly recommend to initiate treatment with parenteral hydroxocobalamin without delay in any suspected remethylation disorder; it significantly improves survival and incidence of severe complications. We strongly recommend betaine treatment in individuals with MTHFR deficiency; it improves the outcome and prevents disease when given early

    Long-term effects of medical management on growth and weight in individuals with urea cycle disorders

    Get PDF
    Low protein diet and sodium or glycerol phenylbutyrate, two pillars of recommended long-term therapy of individuals with urea cycle disorders (UCDs), involve the risk of iatrogenic growth failure. Limited evidence-based studies hamper our knowledge on the long-term effects of the proposed medical management in individuals with UCDs. We studied the impact of medical management on growth and weight development in 307 individuals longitudinally followed by the Urea Cycle Disorders Consortium (UCDC) and the European registry and network for Intoxication type Metabolic Diseases (E-IMD). Intrauterine growth of all investigated UCDs and postnatal linear growth of asymptomatic individuals remained unaffected. Symptomatic individuals were at risk of progressive growth retardation independent from the underlying disease and the degree of natural protein restriction. Growth impairment was determined by disease severity and associated with reduced or borderline plasma branched-chain amino acid (BCAA) concentrations. Liver transplantation appeared to have a beneficial effect on growth. Weight development remained unaffected both in asymptomatic and symptomatic individuals. Progressive growth impairment depends on disease severity and plasma BCAA concentrations, but cannot be predicted by the amount of natural protein intake alone. Future clinical trials are necessary to evaluate whether supplementation with BCAAs might improve growth in UCDs
    corecore