162 research outputs found
Molecular hydrogen in the disk of the Herbig Ae star HD97048
We present high-resolution spectroscopic mid-infrared observations of the
circumstellar disk around the Herbig Ae star HD97048 obtained with the VLT
Imager and Spectrometer for the mid-InfraRed (VISIR). We conducted observations
of mid-infrared pure rotational lines of molecular hydrogen (H2) as a tracer of
warm gas in the disk surface layers. In a previous paper, we reported the
detection of the S(1) pure rotational line of H2 at 17.035 microns and argued
it is arising from the inner regions of the disk around the star. We used VISIR
on the VLT for a more comprehensive study based on complementary observations
of the other mid-infrared molecular transitions, namely S(2) and S(4) at 12.278
microns and 8.025 microns respectively, to investigate the physical properties
of the molecular gas in the circumstellar disk around HD97048. We do not detect
neither the S(2) line nor the S(4) H2 line from the disk of HD97048, but we
derive upper limits on the integrated line fluxes which allows us to estimate
an upper limit on the gas excitation temperature, T_ex < 570 K. This limit on
the temperature is consistent with the assumptions previously used in the
analysis of the S(1) line, and allows us to set stronger contraints on the mass
of warm gas in the inner regions of the disk. Indeed, we estimate the mass of
warm gas to be lower than 0.1 M_Jup. We also discuss the probable physical
mechanisms which could be responsible of the excitation of H2 in the disk of
HD97048.Comment: accepted for publication in Ap
Overview of the CLEF 2023 SimpleText Lab:Automatic Simplification of Scientific Texts
There is universal consensus on the importance of objective scientific information, yet the general public tends to avoid scientific literature due to access restrictions, its complex language or their lack of prior background knowledge. Academic text simplification promises to remove some of these barriers, by improving the accessibility of scientific text and promoting science literacy. This paper presents an overview of the CLEF 2023 SimpleText track addressing the challenges of text simplification approaches in the context of promoting scientific information access, by providing appropriate data and benchmarks, and creating a community of IR and NLP researchers working together to resolve one of the greatest challenges of today. The track provides a corpus of scientific literature abstracts and popular science requests. It features three tasks. First, content selection (what is in, or out?) challenges systems to select passages to include in a simplified summary in response to a query. Second, complexity spotting (what is unclear?) given a passage and a query, aims to rank terms/concepts that are required to be explained for understanding this passage (definitions, context, applications). Third, text simplification (rewrite this!) given a query, asks to simplify passages from scientific abstracts while preserving the main content.</p
On the observability of resonant structures in planetesimal disks due to planetary migration
We present a thorough study of the impact of a migrating planet on a
planetesimal disk, by exploring a broad range of masses and eccentricities for
the planet. We discuss the sensitivity of the structures generated in debris
disks to the basic planet parameters. We perform many N-body numerical
simulations, using the symplectic integrator SWIFT, taking into account the
gravitational influence of the star and the planet on massless test particles.
A constant migration rate is assumed for the planet. The effect of planetary
migration on the trapping of particles in mean motion resonances is found to be
very sensitive to the initial eccentricity of the planet and of the
planetesimals. A planetary eccentricity as low as 0.05 is enough to smear out
all the resonant structures, except for the most massive planets. The
planetesimals also initially have to be on orbits with a mean eccentricity of
less than than 0.1 in order to keep the resonant clumps visible. This numerical
work extends previous analytical studies and provides a collection of disk
images that may help in interpreting the observations of structures in debris
disks. Overall, it shows that stringent conditions must be fulfilled to obtain
observable resonant structures in debris disks. Theoretical models of the
origin of planetary migration will therefore have to explain how planetary
systems remain in a suitable configuration to reproduce the observed
structures.Comment: 16 pages, 13 figures. Accepted for publication in A&
A search for circumstellar dust disks with ADONIS
We present results of a coronographic imaging search for circumstellar dust
disks with the Adaptive Optics Near Infrared System (ADONIS) at the ESO 3.6m
telescope in La Silla (Chile). 22 candidate stars, known to be orbited by a
planet or to show infrared excess radiation, were examined for circumstellar
material. In the PSF-subtracted images no clear disk was found. We further
determine the detection sensitivities and outline how remaining atmospheric
fluctuations still can hamper adaptive optics observations.Comment: To appear in A&A, in pres
An Interferometric Study of the Fomalhaut Inner Debris Disk. II. Keck Nuller Mid-infrared Observations
We report on high-contrast mid-infrared observations of Fomalhaut obtained with the Keck Interferometer Nuller (KIN) showing a small resolved excess over the level expected from the stellar photosphere. The measured null excess has a mean value of 0.35% ± 0.10% between 8 and 11 μm and increases from 8 to 13 μm. Given the small field of view of the instrument, the source of this marginal excess must be contained within 2 AU of Fomalhaut. This result is reminiscent of previous VLTI K-band (≃2μm) observations, which implied the presence of a ~0.88% excess, and argued that thermal emission from hot dusty grains located within 6 AU from Fomalhaut was the most plausible explanation. Using a parametric two-dimensional radiative transfer code and a Bayesian analysis, we examine different dust disk structures to reproduce both the near- and mid-infrared data simultaneously. While not a definitive explanation of the hot excess of Fomalhaut, our model suggests that the most likely inner few AU disk geometry consists of a two-component structure, with two different and spatially distinct grain populations. The 2-11 μm data are consistent with an inner hot ring of very small (≃10-300 nm) carbon-rich grains concentrating around 0.1 AU. The second dust population—inferred from the KIN data at longer mid-infrared wavelengths—consists of larger grains (size of a few microns to a few tens of microns) located further out in a colder region where regular astronomical silicates could survive, with an inner edge around 0.4 AU-1 AU. From a dynamical point of view, the presence of the inner concentration of submicron-sized grains is surprising, as such grains should be expelled from the inner planetary system by radiation pressure within only a few years. This could either point to some inordinate replenishment rates (e.g., many grazing comets coming from an outer reservoir) or to the existence of some braking mechanism preventing the grains from moving out
Unraveling the Mystery of Exozodiacal Dust
Exozodiacal dust clouds are thought to be the extrasolar analogs of the Solar System's zodiacal dust. Studying these systems provides insights in the architecture of the innermost regions of planetary systems, including the Habitable Zone. Furthermore, the mere presence of the dust may result in major obstacles for direct imaging of earth-like planets. Our EXOZODI project aims to detect and study exozodiacal dust and to explain its origin. We are carrying out the first large, near-infrared interferometric survey in the northern (CHARA/FLUOR) and southern (VLTI/PIONIER) hemispheres. Preliminary results suggest a detection rate of up to 30% around A to K type stars and interesting trends with spectral type and age. We focus here on presenting the observational work carried out by our tea
Hot exozodiacal dust resolved around Vega with IOTA/IONIC
Although debris discs have been detected around a significant number of
main-sequence stars, only a few of them are known to harbour hot dust in their
inner part where terrestrial planets may have formed. Thanks to infrared
interferometric observations, it is possible to obtain a direct measurement of
these regions, which are of prime importance for preparing future exo-Earth
characterisation missions. In this context, we have resolved the exozodiacal
dust disc around Vega with the help of infrared stellar interferometry and
estimated the integrated H-band flux originating from the first few AUs of the
debris disc. Using precise H-band interferometric measurements obtained with
the 3-telescope IOTA/IONIC interferometer (Mount Hopkins, Arizona), thorough
modelling of both interferometric data (squared visibility and closure phase)
and spectral energy distribution was performed to constrain the nature of the
near-infrared excess emission. The most straightforward scenario consists in a
compact dust disc producing a thermal emission that is largely dominated by
small grains located between 0.1 and 0.3 AU from Vega and accounting for 1.23
+/- 0.45% of the near-infrared stellar flux for our best-fit model. This flux
ratio is shown to vary slightly with the geometry of the model used to fit our
interferometric data (variations within +/-0.19%). Initially revealed by K-band
CHARA/FLUOR observations, the presence of hot exozodiacal dust in the vicinity
of Vega is confirmed by our H-band IOTA/IONIC measurements at the 3-sigma
level. Whereas the origin of the dust is still uncertain, its presence and the
possible connection with the outer disc suggest that the Vega system is
currently undergoing major dynamical perturbations.Comment: 10 pages, 9 figures, accepted for publication in A&
- …