1 research outputs found

    TeV gamma-UHECR anisotropy by decaying nuclei in flight: first neutrino traces?

    Full text link
    Ultra High Cosmic Rays) made by He-like lightest nuclei might solve the AUGER extragalactic clustering along Cen A. Moreover He like UHECR nuclei cannot arrive from Virgo because the light nuclei fragility and opacity above a few Mpc, explaining the Virgo UHECR absence. UHECR signals are spreading along Cen-A as observed because horizontal galactic arms magnetic fields, bending them on vertical angles. Cen A events by He-like nuclei are deflected as much as the observed clustered ones; proton will be more collimated while heavy (iron) nuclei are too much dispersed. Such a light nuclei UHECR component coexist with the other Auger heavy nuclei and with the Hires nucleon composition. Remaining UHECR spread group may hint for correlations with other gamma (MeV-Al^{26} radioactive) maps, mainly due to galactic SNR sources as Vela pulsar, the brightest, nearest GeV source. Other nearest galactic gamma sources show links with UHECR via TeV correlated maps. We suggest that UHECR are also heavy radioactive galactic nuclei as Ni^{56}, Ni^{57} and Co^{60} widely bent by galactic fields. UHECR radioactivity (in β\beta and γ\gamma channels) and decay in flight at hundreds keV is boosted (by huge Lorentz factor (nearly a billion) leading to PeVs electrons and consequent synchrotron TeVs gamma offering UHECR-TeV correlated sky anisotropy. Moreover also rarest and non-atmospheric electron and tau neutrinos secondaries at PeVs, as the first two rarest shower just discovered in ICECUBE, maybe the first signature of such expected radioactive secondary tail.Comment: 7 pages,3 figures. arXiv admin note: substantial text overlap with arXiv:1201.015
    corecore